Abstract:
A foam assembly for use as an interior component in an automobile includes a foam core having a hard foam portion and a soft foam portion. The hard foam has a first density to provide firmness and support to the foam core and the soft foam has a second density that is less than the first density, to provide comfort and feel to the foam core. The foam assembly may further including an impervious barrier that is disposed between the hard foam and the soft foam to maintain separation between the hard foam and the soft foam.
Abstract:
A cellular mobile station including a modem processor and memory. The memory includes instructions for the modem processor to perform layer 1 processor operations, layer 2 processor operations, and layer 3 processor operations. The modem processor executes the instructions to perform processor operations for the cellular mobile station to communication data as per a cellular communications protocol. In one example, the mobile station includes different levels of memory to provide different deterministic access times
Abstract:
A method is described to allow a device to retrieve a message, that is separated into a plurality of fragments, from a data source, wherein the method involves: establishing a first network connection with the data source; receiving a subset of the plurality of fragments; determining the first network connection has ended before completion of said message; establishing one or more subsequent network connections with the data source; and receiving any of the plurality of fragments not within the subset. The characteristics (for example: application protocol, security, speed, reach, bandwidth capability, cost of usage, network type, physical layer type, data-link layer type, or IP address of one or both of the first and second devices) of the first network connection can be potentially different than the subsequent network connections.
Abstract:
A remote mobile device periodically connects with a centralized data server to receive updated information. Because of the mobile nature of the remote device, a download of all available information may not be able to be completed during the initial network connection. When the mobile device can again reconnect to the centralized data server, the two machines are able to continue the exchange of information even if the new network connection uses different underlying technologies or different connection protocols. A fragmentation layer is used in the protocol stack above the transport layer to separate messages into chunks. By tracking which chunks are successfully sent between the two machines, the efficient exchange of messages can occur across multiple, different network connections.
Abstract:
A method (400) of conducting a financial transaction. The method can include receiving from each of a plurality of credit providers an offer (130) indicating an incentive (125) available to a user for using an established credit account to make payment for the financial transaction at a point-of-sale terminal (110), and presenting the offers to the user. The user can be prompted to select one of the established credit accounts to make payment for the financial transaction.
Abstract:
A time diversity communication system (150) comprises a messaging terminal (154), a queue (156) at the messaging terminal for queuing incoming messages, an encoder (158) for encoding a first fragment of a message and the remaining fragments of a message, a transmitter (160) for repeatedly transmitting the first fragment in a plurality of time slots to at least one selective call receiver (201) operating in a first mode, the number of time slots equaling a desired number of repeat transmissions and wherein the first fragment contains instructions for decoding the remaining fragments in a second mode by the selective call receiver, the transmitter (160) also repeatedly transmits the remaining portions of the message in subsequent time slots and at least one selective call receiver that decodes the first fragment and remaining fragments of the message in accordance with instructions in the decoded first fragment.
Abstract:
A seat back structure includes a web extending about a central opening, and an inner flange extending about an inner perimeter of the web adjacent to the central opening. The seat back structure also includes an outer flange extending about an outer perimeter of the web. The inner flange, the outer flange and the web form a channel extending about the seat back structure, and the seat back structure is formed from a single piece of material.
Abstract:
A method is described to allow a device to retrieve a message, that is separated into a plurality of fragments, from a data source, wherein the method involves: establishing a first network connection with the data source; receiving a subset of the plurality of fragments; determining the first network connection has ended before completion of said message; establishing one or more subsequent network connections with the data source; and receiving any of the plurality of fragments not within the subset. The characteristics (for example: application protocol, security, speed, reach, bandwidth capability, cost of usage, network type, physical layer type, data-link layer type, or IP address of one or both of the first and second devices) of the first network connection can be potentially different than the subsequent network connections.
Abstract:
A cellular mobile station including a modem processor and memory. The memory includes instructions for the modem processor to perform layer 1 processor operations, layer 2 processor operations, and layer 3 processor operations. The modem processor executes the instructions to perform processor operations for the cellular mobile station to communication data as per a cellular communications protocol. In one example, the mobile station includes different levels of memory to provide different deterministic access times
Abstract:
A method for tracking objects in a way that, conserves power resources. The method can establish a designed range defining a safe area based upon the broadcast signal of an anchor beacon. When the tracking device is within the designed range, the tracking device can be placed in a mode of low power consumption. Should the tracking device move outside of the designated range, then the tracking device can be placed in mode for active tracking. The level of power consumption can he achieved by only enabling a WAN transceiver in the active tracking mode.