摘要:
Provided is a novel synthesis of quetiapine, and pharmaceutically acceptable salts thereof, in which an alkali metal halide or siliyl halide is included in the reaction mixture.
摘要:
The present invention provides a process for reacting between a phenol derivative and an aromatic substrate under phenolate forming conditions comprising the following steps: (a) reacting a phenol derivative with a base in a polar organic solvent to obtain a phenolate salt, wherein water is removed form the reaction mixture during the reaction, (b) adding the aromatic substrate to the reaction mixture obtained in step (a), (c) heating the reaction mixture of step (b) to a temperature in the range of 80° to 1300° C., preferably, 90° to 1000° C. for 2 to 7 hours to obtain a phenoxy substituted aromatic substrate, (d) removing the solvent from the mixture of step (c) and optionally further isolating an purifying the phenoxy substituted aromatic substrate. Optionally, the removal of water during step (a) is in conjunction with partial removal of the organic solvent.
摘要:
Provided is a novel synthesis of quetiapine, and pharmaceutically acceptable salts thereof, in which an alkali metal halide or siliyl halide is included in the reaction mixture.
摘要:
The present invention provides a process for reacting between a phenol derivative and an aromatic substrate under phenolate forming conditions comprising the following steps: (a) reacting a phenol derivative with a base in a polar organic solvent to obtain a phenolate salt, wherein water is removed form the reaction mixture during the reaction, (b) adding the aromatic substrate to the reaction mixture obtained in step (a), (c) heating the reaction mixture of step (b) to a temperature in the range of 80° to 1300° C., preferably, 90° to 1000° C. for 2 to 7 hours to obtain a phenoxy substituted aromatic substrate, (d) removing the solvent from the mixture of step (c) and optionally further isolating an purifying the phenoxy substituted aromatic substrate. Optionally, the removal of water during step (a) is in conjunction with partial removal of the organic solvent.
摘要:
The present invention relates to a process to prepare semi synthetic statins, to intermediates formed during said process and to highly purified simvastatin produced by the process.
摘要:
The present invention is directed to the novel forms of torsemide, designated Form V, amorphous torsemide, Dupont Form 2 solvent adduct, Dupont Form 2 ethanol adduct and Dupont Form 2 isopropanol adduct. Methods for their preparation are also disclosed. The present invention also relates to processes for making torsemide modification I. Pharmaceutical compositions containing the new forms of torsemide and methods of using them are also disclosed.
摘要:
The present invention provides a process for reacting between a phenol derivative and an aromatic substrate under phenolate forming conditions comprising the following steps: (a) reacting a phenol derivative with a base in a polar organic solvent to obtain a phenolate salt, wherein water is removed from the reaction mixture during the reaction, (b) adding the aromatic substrate to the reaction mixture obtained in step (a), (c) heating the reaction mixture of step (b) to a temperature in the range of 80° to 1300° C., preferably, 90° to 1000° C. for 2 to 7 hours to obtain a phenoxy substituted aromatic substrate, (d) removing the solvent from the mixture of step (c) and optionally further isolating and purifying the phenoxy substituted aromatic substrate. Optionally, the removal of water during step (a) is in conjunction with partial removal of the organic solvent.
摘要:
A process for the isolation of the pseudomonic acid A antibiotic of pharmaceutical quality from the culture broth of one of the pseudomonic acid A-producing species of the Pseudomonas bacterium genus comprising the extraction of the biosynthesized pseudomonic acid A from the culture broth at acidic pH with a chlorinated aliphatic hydrocarbon or isobutyl acetate, followed by purification, is disclosed. The invention includes processes for purification of the isolated pseudomonic acid A, including (a) by the distribution of the evaporated extract residue between the aqueous-alcohol and some aliphatic or aromatic hydrocarbon, and then the extraction of the increased water-containing aqueous-alcoholic phase with methylene chloride, ethyl acetate, or isobutyl acetate; (b) by the extraction of the extract with aqueous ammonium hydrogen carbonate, alkali metal hydroxide or ammonium hydroxide solution and the acidification of the resulting alkaline aqueous extract, then reextraction again with a chlorinated aliphatic hydrocarbon or isobutyl acetate; and (c) by the concentration of the extract and the recrystallization of the crystalline pseudomonic acid A in a mixture of isobutyl acetate and petroleum ether, or acetonitrile, or aqueous acetonitrile.