Abstract:
A method for executing a flight mission by one or more unmanned aerial vehicles is disclosed. The method comprises receiving, from an unmanned aerial vehicle, a data stream containing audience location information; analyzing the audience location information to determine the presence of one or more people; receiving an instruction setting a predetermined number of people; determining whether a number of people at the location is equal to or greater than the predetermined number of people; retrieving a message data file; transmitting the message data file to the unmanned aerial vehicle; and displaying, by the unmanned aerial vehicle, the message data file on a display screen integral to the first unmanned aerial vehicle. In other embodiments, individuals may present visual information to the UAV. The system then selects a response based on the visual information presented to the UAV.
Abstract:
The invention is directed toward a system and method for assigning mission directives to one or more unmanned vehicles and transferring mission directives from one unmanned aerial vehicle to a second unmanned aerial vehicle. The method comprises providing a set of instructions to a first unmanned aerial vehicle, storing the set of instructions on a nonvolatile memory component of the first unmanned aerial vehicle, executing one or more tasks of the set of instructions by the first unmanned aerial vehicle, transferring a set of instructions comprising unexecuted tasks from the first unmanned aerial vehicle to a second unmanned aerial vehicle, and storing the set of instructions on a nonvolatile memory component of the second unmanned aerial vehicle. The invention is further directed toward a method of determining a flight path for one or more unmanned aerial vehicles stationed at charging stations.
Abstract:
The invention is directed toward a system and method for placing, activating, and testing sensors. The system comprises one or more server computers, one or more communication hubs, one or more unmanned aerial vehicles, and one or more sensors. The method comprises the steps of receiving geographic sensor placement locations, receiving sensor parameters, determining the geographic location of sensors, respectively sending location query signals to the unmanned aerial vehicles, respectively receiving location reply signals from the unmanned aerial vehicles, and calculating a geographic flight path for the unmanned aerial vehicles. The method also comprises calculating mission objectives and the energy needs of the unmanned aerial vehicles to complete the mission objectives. The method then determines the most efficient combination of unmanned aerial vehicles to complete the mission objectives and assigns the tasks to the unmanned aerial vehicles. The unmanned aerial vehicles place, activate, and test the sensors.
Abstract:
The invention is directed toward a system and method for placing, activating, and testing sensors. The system comprises one or more server computers, one or more communication hubs, one or more unmanned aerial vehicles, and one or more sensors. The method comprises the steps of receiving geographic sensor placement locations, receiving sensor parameters, determining the geographic location of sensors, respectively sending location query signals to the unmanned aerial vehicles, respectively receiving location reply signals from the unmanned aerial vehicles, and calculating a geographic flight path for the unmanned aerial vehicles. The method also comprises calculating mission objectives and the energy needs of the unmanned aerial vehicles to complete the mission objectives. The method then determines the most efficient combination of unmanned aerial vehicles to complete the mission objectives and assigns the tasks to the unmanned aerial vehicles. The unmanned aerial vehicles place, activate, and test the sensors.