Abstract:
An IoT device management system and method that automatically monitors and dynamically reacts to events and reconstructs application systems is provided. The IoT device management system can be a location-based network system includes a plurality of communication nodes.
Abstract:
An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
Abstract:
A module for a drone that integrates an electronic circuit and one or more sensors for the attitude, altitude, speed, orientation and/or position of the drone in the same one-piece housing. The module also integrates an electronic power circuit that receives set command values prepared by the processor of the electronic circuit on the basis of the data provided by the integrated sensors and provides, as an output, corresponding signals for directly supplying current or voltage to the propulsion means of the drone and to the control surfaces.
Abstract:
A stabilizer for camera shooting, which enables correction of a position of a camera module, includes a frame having an inner space, a plurality of camera modules mounted on the frame, each of the plurality of camera modules including a lens for shooting an outside of the frame, a first brushless motor arranged in the inner space and rotating the frame around a first rotation axis, and a second brushless motor arranged in the inner space and rotating the frame around a second rotation axis crossing the first rotation axis on a same plane, in which the frame is rotatably coupled to the first brushless motor via a first shaft, the frame capable of rotating with respect to the first brushless motor, and a height of each lens in a Z-axis direction is within a range of a shortest dimension in a transverse direction between the frame and a center of the inner space of the frame with respect to the first shaft.
Abstract:
A magnetic end effector utilizing a switchable Halbach array includes a pair of opposing members that can move towards and away from each other. The switchable Halbach arrays are located on or near the inner surface of the opposing members. A mechanical switching system is used to control the switchable Halbach arrays by moving one or more magnets that make up the switchable Halbach arrays. When manipulated in a certain way, the switchable Halbach arrays cause the opposing members to move towards each other, and when manipulate in a different manner, cause the opposing members to move away from each other.
Abstract:
A navigation system for an unmanned aerial vehicle (UAV). The navigation system includes a dedicated short range communication (DSRC) module onboard the UAV configured to communicate with DSRC modules of land-based vehicles for tracking travel paths of the land-based vehicles and deriving location of roadways based on the travel paths. A flight control module of the UAV is configured to navigate the UAV to follow roadways identified based on the tracked travel paths of the land-based vehicles.
Abstract:
Redundancy in engine timing position sensing maintains a UAV operational in the event of failure of a primary engine timing position sub-system. The redundancy avoids duplication of the primary crankshaft timing position sensing components, and avoids adding weight, cost and component complexity. Conditioned (square) waveform(s) (102) is/are created from respective sinusoidal waveform(s). Each consecutive leading edge (103a) and trailing edge (103b) of the pulses of the square waveform (102) is derived from the crossing of the zero voltage value by consecutive sinusoidal waveforms A,B,C (e.g. Voltage (V) vs Time (t) or angular degrees). The square pulse waveform (102) is output (104) to a microcontroller (106) to create and output a pseudo crankshaft timing position signal (108) to be used by an ECU to determine ignition and fuel injection events in the event that the primary timing signal from the crankshaft position sensor (CPS) has failed. The signal (108) output to the ECU can have a missing pulse (116) (i.e. indicative of a TDC position of the engine crankshaft) as well as multiple square pulses (114) corresponding to the pulses of the initial square pulse waveform (102). The waveform signal (108) is therefore derived from the alternator waveform signal(s) and provides a pseudo crankshaft timing position signal in the event of failure of the primary or initial CPS signal.
Abstract:
Described are systems and methods for drone interdiction. A target aircraft is detected based on data from one or more of one or more radars, a fixed camera image from one or more fixed cameras, and an interceptor aircraft image from a camera mounted to an interceptor aircraft. An interception location is generated describing where the interceptor aircraft and the target aircraft are expected to meet. The interceptor aircraft is directed to the interception location to immobilize the target aircraft.
Abstract:
A display device includes a display unit, at least a flight unit connected to the display unit, a position information receiving unit obtaining information on a current position of the display device, a sensor unit obtaining information of a user, a flight control unit automatically controlling a flight of the display device, a posture information obtaining unit obtaining posture information of the display device, a main control unit controlling an overall operation of respective components of the display device, a posture correction unit varying an angle of the display device or the display unit, a vibration system, a voice recognition unit, a communication module, an input member transmitting input information to the communication module, a power source unit, an obstacle detection unit, a joint manipulator connecting the at least one flight unit and the display unit, and a connector connecting the display unit and the display device.
Abstract:
The present disclosure relates to a method (200) for estimating information related to a vehicle pitch and/or roll angle. The method comprises a step of obtaining (220) a first estimate of the information related to the pitch and/or roll angle. The method is characterized by the steps of capturing (210) an image of an area covering at least a part of the horizon using a camera mounted on the airborne vehicle, and determining (240) an improved estimate of the information related to the pitch and/or roll angle based on the first estimate of the information related to the pitch and/or roll angle, and a digital elevation model.