摘要:
Disclosed herein is an apparatus and method for implementing an all-optical OR logic gate. The apparatus includes an optical pulse generator, a Mode-Locked Fiber Laser (MLFL), a first optical splitter, a first optical delay line means, an optical control means, a first optical coupler, a second optical splitter, a second optical delay line means, a third optical splitter, an Erbium Doped Fiber Amplifier (EDFA), a Semiconductor Optical Amplifier (SOA), a second optical coupler, and an optical analyzer. The first optical splitter divides light output from the MLFL. The first and second optical delay line means acquire time delay. The optical control means controls intensity and polarization of the light. The first optical coupler generates the first input signal pattern as a probe signal. The second optical splitter divides light output from the first optical coupler. The third optical splitter divides the second input signal pattern. The EDFA amplifies the divided part of the second input signal pattern as a pump signal. The SOA couples the pump signal with the probe signal in opposite directions to perform the all-optical OR logic operation. The second optical coupler couples a signal output from the SOA with the second input signal pattern.
摘要:
Provided is a method of analyzing binding efficiency of adhesive nanoparticles. The method includes (a) injecting a solution containing nanoparticles into a first chamber slide, (b) evaporating only the solution from the first chamber slide into which the solution containing the nanoparticles is injected, and measuring a saturation temperature using a thermal imager while radiating light from a light source, (c) injecting cells into a second chamber slide, (d) injecting a solution containing nanoparticles into the second chamber slide in which the cells are cultured, (e) removing nanoparticles which are not bound to the cells from the second chamber slide into which the cells and the nanoparticles are injected, and (f) evaporating only the solution from the second chamber slide from which the nanoparticles are removed, and measuring a saturation temperature using a thermal image while radiating light from the light source.
摘要:
The present invention relates to an apparatus and method for simultaneously generating terahertz wave and supercontinuum, and a spectroscopy method using the apparatus and method, in which terahertz wave and supercontinuum can be efficiently and simultaneously generated by a single device after taking into consideration the problems of conventional methods in which terahertz wave and supercontinuum were generated by separate devices. The apparatus for simultaneously generating terahertz wave and supercontinuum, includes a terahertz wave generation unit for generating a terahertz wave, and a supercontinuum generation unit for generating a supercontinuum based on nonlinear effect, wherein the terahertz wave and the supercontinuum are simultaneously generated using a single input light signal.
摘要:
Disclosed herein is an apparatus and method for implementing an all-optical OR logic gate. The apparatus includes an optical pulse generator, a Mode-Locked Fiber Laser (MLFL), a first optical splitter, a first optical delay line means, an optical control means, a first optical coupler, a second optical splitter, a second optical delay line means, a third optical splitter, an Erbium Doped Fiber Amplifier (EDFA), a Semiconductor Optical Amplifier (SOA), a second optical coupler, and an optical analyzer. The first optical splitter divides light output from the MLFL. The first and second optical delay line means acquire time delay. The optical control means controls intensity and polarization of the light. The first optical coupler generates the first input signal pattern as a probe signal. The second optical splitter divides light output from the first optical coupler. The third optical splitter divides the second input signal pattern. The EDFA amplifies the divided part of the second input signal pattern as a pump signal. The SOA couples the pump signal with the probe signal in opposite directions to perform the all-optical OR logic operation. The second optical coupler couples a signal output from the SOA with the second input signal pattern.
摘要:
The present invention relates to a method of embodying all-optical XOR logic gate by using semiconductor optical amplifier, and more particularly, to a technique to embody all-optical XOR logic gate utilizing the cross-gain modulation (XGM) characteristic of semiconductor optical amplifiers controllable with input currents, illumination signal, and pumping signal.The method of all-optical XOR logic element in accordance with the present invention is characterized to obtain operational characteristic of the all-optical XOR logic element by inputting pump-signal and illumination signal concurrently into two semiconductor optical amplifiers and then summing the two output signals having XGM characteristic arising from gain saturation and wavelength conversion of the semiconductor optical amplifiers.
摘要:
A semiconductor magneto-optical integrated optical isolator is realized with a Mach-Zehnder integrated optical isolator in which a cladding and a guiding layer of light waveguide are composed of magnetic material. Here, it uses nonreciprocal phase shift created when light propagation direction is changed. The fundamental element deriving this nonreciprocal phase shift is the Faraday rotation of magnetic material. Therefore, it is essential to have large Faraday rotation in order to fabricate a short length integrated optical isolator. However, since magnetic material of bulk state does not have large Faraday rotation, there need the length of several mm units for fabricating an isolator. The invention is to realize an integrated optical isolator using magneto-optical crystal in which magneto-optical material and dielectric substance have periodic structure. By the above reasons, magneto-optical crystal becomes to have bigger Faraday rotation than that of bulk state magnetic materials; thereby nonreciprocal phase shift becomes large and a short length integrated optical isolator can be fabricated. Thus, in order to reduce the device length of a Mach-Zehnder optical isolator, magneto-optical crystal having large Faraday rotation is used.
摘要:
The present invention relates to an implementation method of all-optical half adder by using semiconductor optical amplifier(SOA)-based devices and the apparatus thereof. In more detail, it relates to an implementation method of all-optical half adder comprising an all-optical XOR gate and an all-optical AND gate, implemented by using SOA-based devices, and an apparatus thereof.
摘要:
Provided are a method of controlling an amount of adsorbed carbon nanotubes (CNTs) and a method of fabricating a CNT device. The method of controlling an amount of adsorbed CNTs includes adsorbing CNT particles onto a semiconductor structure, and removing some of the adsorbed CNTs by performing an oxygen plasma treatment on the adsorbed CNT particles.
摘要:
An apparatus for measuring ganglion cells may include: a light generation unit configured to irradiate a first light signal polarized in a first direction and a second light signal polarized in a second direction perpendicular to the first direction to a subject; a reflected light processing unit configured to generate an amplification signal corresponding to an image of the subject using a first reflection signal, which is the first light signal reflected from the subject, and a second reflection signal, which is the second light signal reflected from the subject; and an image processing unit configured to measure ganglion cells in the subject using the amplification signal. The apparatus may be used to count the number of normal ganglion cells in the retina by measuring a phase difference of two lights polarized in different directions. The apparatus may also be used to monitor the progress of glaucoma.
摘要:
The present invention relates to a terahertz wave generator and a method of generating high-power terahertz waves using the terahertz wave generator. The terahertz wave generator includes a hollow spherical body, and a focusing lens installed in a cutout portion of the spherical body or an opening formed in the cutout portion, wherein an inner surface of the spherical body is coated with metal. In the method, frequencies having different levels are incident through the focusing lens or the opening to generate a plurality of air plasmas, and the air plasmas cause continuous focusing the metal-coated inner surface and hollow space of the spherical body, thus generating high-power terahertz waves.According to the present invention, a plurality of air plasmas is continuously generated, thus solving the problem in which the light intensity of terahertz waves generated using one air plasma is low.