Abstract:
Methods are provided for processing crude oil feeds with reduced or minimized energy usage, reduced or minimized numbers of processing steps, improved allocation of hydrogen, and reduced or minimized formation of low value products. The methods reduce or minimize the use of vacuum distillation, and in many aspects reduce or minimize the use of both atmospheric and vacuum distillation. The methods also reduce or minimize the use of coking and fluid catalytic cracking processes.
Abstract:
A process for removing polar components from a process stream in a refinery process without cooling the process stream. The process stream is fed to a first adsorber unit to remove contaminants containing sulfur at substantially the same elevated temperature by exposing the process stream to a metal oxide and/or a mixed metal oxide to remove the sulfur containing contaminants and produce a metal sulfide and a desulfurized process stream. The metal sulfide may be regenerated by exposing it to a stream of oxygen and the desulfurized process stream exposed to the regenerated metal/mixed metal oxide to remove moisture from the stream. The stream is then processed within a second adsorber unit to remove nitrogen containing contaminants at substantially the same elevated temperature by exposing the stream to a molecular sieve and/or zeolite.
Abstract:
A process and system for removing polar components from a process stream in a refinery process without cooling the process stream are disclosed. The process stream is fed to a first adsorber unit to remove contaminants containing sulfur from the process stream. The process stream is processed within the first adsorber unit to remove sulfur containing contaminants. The process stream is processed with the first adsorber unit at substantially the same elevated temperature. The process stream is processed within the first adsorber unit by exposing the process stream to at least one of a metal oxide and a mixed metal oxide to remove the sulfur containing contaminants from the process stream and produce a metal sulfide and a desulfurized process stream. The metal sulfide may be exposed to a stream of oxygen to regenerate the at least one of a metal oxide and a mixed metal oxide. The desulfurized process stream may be exposed to at least one of the regenerated metal oxide and regenerated mixed metal oxide to remove moisture from the desulfurized process stream. The desulfurized process stream is then fed through a second adsorber unit to remove contaminants containing nitrogen from the process stream. The process stream is processed within the second adsorber unit to remove nitrogen containing contaminants, where the process stream being processed at substantially the same elevated temperature. The process stream is processed within the second adsorber unit by exposing the process stream to at least one of a molecular sieve and zeolites to remove nitrogen containing contaminants from the process stream.
Abstract:
Methods are provided for processing crude oil feeds with reduced or minimized energy usage, reduced or minimized numbers of processing steps, improved allocation of hydrogen, and reduced or minimized formation of low value products. The methods reduce or minimize the use of vacuum distillation, and in many aspects reduce or minimize the use of both atmospheric and vacuum distillation. The methods also reduce or minimize the use of coking and fluid catalytic cracking processes.
Abstract:
A system for removing polar components from a process stream in a refinery process without cooling the stream is disclosed. The stream is fed to a first adsorber unit to remove contaminants containing sulfur from the stream at substantially the same elevated temperature. The stream is processed within the first adsorber unit by exposing the stream to at least one of a metal oxide and a mixed metal oxide to remove the sulfur containing contaminants and produce a metal sulfide and a desulfurized stream. The desulfurized stream is then fed through a second adsorber unit to remove contaminants containing nitrogen from the stream at substantially the same elevated temperature. The stream is processed within the second adsorber unit by exposing the stream to at least one of a molecular sieve and zeolites to remove nitrogen containing contaminants from the stream.