Abstract:
Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by with an apparatus arranged for flashing the feed at a target cut point temperature to obtain two fractions. A low boiling temperature fraction contains refractory, sterically hindered sulfur-containing compounds, which have a boiling point at or above the target cut point temperature. A high boiling temperature fraction, having a boiling point below the target cut point temperature, is substantially free of refractory sulfur-containing compounds. The high boiling temperature fraction is contacted with isomerization catalyst, and the isomerized effluent and the low boiling temperature fraction are combined and contacted with a hydrotreating catalyst in a hydrodesulfurization reaction zone operating under mild conditions to reduce the quantity of organosulfur compounds to an ultra-low level.
Abstract:
The present invention relates to a process for the partial upgrading of properties of heavy and/or extra-heavy crude oil by low severity catalytic hydrotreatment in only one reaction step. The process of the present invention is obtained upgraded oil with properties required for its transportation from offshore platforms either to maritime terminal or to refining centers. The process reduces the viscosity of heavy and/or extra-heavy crude oil, and decreases the concentration of impurities, such as sulfur, nitrogen, and metals, in such a way that heavy and/or extra-heavy crude oils can be transported to maritime terminals or to refining centers. The process increases the lifetime of the catalyst and decreased operating costs by reducing consumption of utilities because the operation of the process is carried out at lower severity. The partially upgraded oils obtained in this process can be transported directly to the maritime terminals or to existing refineries.
Abstract:
An oxidative treatment process, e.g., oxidative desulfurization or denitrification, is provided in which the oxidant is produced in-situ using an aromatic-rich portion of the original liquid hydrocarbon feedstock. The process reduces or replaces the need for the separate introduction of liquid oxidants such as hydrogen peroxide, organic peroxide and organic hydroperoxide in an oxidative treatment process.
Abstract:
Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by first subjecting the entire feed to an extraction zone to separate an aromatic-rich fraction containing a substantial amount of the aromatic refractory and sterically hindered sulfur-containing compounds and an aromatic-lean fraction containing a substantial amount of the labile sulfur-containing compounds. The aromatic-rich fraction is contacted with isomerization catalyst, and the isomerized aromatic-rich fraction and the aromatic-lean fraction are combined and contacted with a hydrotreating catalyst in a hydrodesulfurization reaction zone operating under mild conditions to reduce the quantity of organosulfur compounds to an ultra-low level.
Abstract:
Processes for upgrading resid hydrocarbon feeds are disclosed. The upgrading processes may include: hydrocracking a resid in a first reaction stage to form a first stage effluent; hydrocracking a deasphalted oil fraction in a second reaction stage to form a second stage effluent; fractionating the first stage effluent and the second stage effluent to recover at least one distillate hydrocarbon fraction and a resid hydrocarbon fraction; feeding the resid hydrocarbon fraction to a solvent deasphalting unit to provide an asphaltene fraction and the deasphalted oil fraction.
Abstract:
The invention concerns a process for the intense conversion of a heavy hydrocarbon feed, comprising the following steps: a) a first step for ebullated bed hydroconversion; b) a step for separating at least a portion of the hydroconverted liquid effluent obtained from step a); c) a step for hydrocracking at least a portion of the vacuum gas oil fraction obtained from step b); d) a step for fractionating at least a portion of the effluent obtained from step c); e) a step for recycling at least a portion of the unconverted vacuum gas oil fraction obtained from step d) to said first hydroconversion step a).
Abstract:
Processes for upgrading partially converted vacuum residua hydrocarbon feeds are disclosed. The upgrading processes may include: steam stripping the partially converted vacuum residua to generate a first distillate and a first residuum; solvent deasphalting the first residuum stream to generate a deasphalted oil and an asphaltenes fraction; vacuum fractionating the deasphalted oil to recover a deasphalted gas oil distillate and a heavy deasphalted residuum; contacting the first distillate and the deasphalted gas oil distillate and hydrogen in the presence of a first hydroconversion catalyst to produce a product; contacting the heavy deasphalted residuum stream and hydrogen in the presence of a second hydroconversion catalyst to produce an effluent; and fractionating the effluent to recover a hydrocracked atmospheric residua and a hydrocracked atmospheric distillate
Abstract:
A process for increasing the yields of light olefins or shifting to increase the hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream, and to convert components from the reforming stream to the cracking stream.
Abstract:
A system and process for the preparation of high quality gasoline through recombination of catalytic hydrocarbon includes fractionator and extractor. The upper part of the fractionator is equipped with light petrol pipeline, the lower part of the fractionator is equipped with heavy petrol pipeline, the middle part of the fractionator is equipped with medium petrol pipeline. The medium petrol pipeline is connected with a medium petrol extractor, the upper part of the medium petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline, the lower part of the medium petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline. The medium petrol aromatic hydrocarbon hydrogenation unit is then connected with the light petrol pipeline in the upper part of the fractionator through the pipeline, the lower part of the heavy petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline, the upper part of the heavy petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline.
Abstract:
An apparatus is disclosed for recovering hydroprocessing effluent from a hydroprocessing unit utilizing a hot stripper and a cold stripper. A net overhead stream from the hot stripper is forwarded to the cold stripper for further stripping. The invention is particularly suitable for hydrotreating residue feed streams. The hot stripped stream may be subjected to fluid catalytic cracking. The apparatus and process eliminates the need for a fired heater in the product recovery unit.