Abstract:
A multi-port optical connection terminal for use as a branch point in a fiber optic communications network at a distance from a mid-span access location provided on a distribution cable having a plurality of optical fibers. The multi-port terminal includes a base and a cover affixed to the base. A stub cable port formed through one of the base and the cover receives a stub cable having at least one optical fiber extending continuously from the multi-port terminal to the mid-span access location. A first end of the optical fiber is optically connected to a respective optical fiber of the distribution cable at the mid-span access location and a fiber optic connector is mounted upon the second end. At least one connector port is provided on the multi-port terminal for receiving the fiber optic connector and a connectorized end of a fiber optic drop cable extending from the multi-port terminal.
Abstract:
This invention is based on sizes and shapes of wooden building panels that creates a standard of measurement for wooden stick built panels to increase efficiency in design, manufacturing, cost control and assembly.The corner panels have a 20 gauge galvanized metal plate that is sandwiched between the studs, top and bottom plates to complete structural soundness and maintain shape during storage, transport and assembly.Panels are joined with 20 gauge galvanized metal plates at first top plate to complete structural soundness and wooden cleats at vertical edge studs that allows for easier assembly and an even surface for interior wall covering installation.
Abstract:
An outdoor cabinet interconnects an optical fiber of a feeder cable with at least two optical fibers of a distribution cable at a local convergence point in an optical network. The cabinet defines an interior compartment comprising a feeder cable side having a feeder cable entry port and a feeder cable slack storage area, a distribution cable side having a distribution cable entry port and a distribution cable slack storage area, at least one splice tray and at least one coupler module. A feeder pigtail is routed from the splice tray and connected to an adapter provided on the coupler module. At least two distribution pigtails are routed from the splice tray and connected to adapters provided on the coupler module. The coupler module splits an optical signal carried on the optical fiber of the feeder cable into optical signals carried on the optical fibers of the distribution cable.
Abstract:
A closure interconnects at least one optical fiber of a feeder cable with two or more optical fibers of a distribution cable at a local convergence point in an optical network. The base of the closure defines a fiber storage and fiber management area adjacent one of the end caps and a fiber coupling area adjacent the other end cap. The fiber coupling area includes one or more coupler modules for splitting an optical signal carried on the optical fiber of the feeder cable into different optical signals carried on the two or more optical fibers of the distribution cable. The optical fiber of the feeder cable is spliced to an input optical fiber of a connectorized pigtail and then split into two or more output optical fibers of connectorized pigtails. The output optical fibers of the pigtails are then spliced to optical fibers of the distribution cable.
Abstract:
A fiber optic NID includes a base defining an interior cavity and a protective cover. A backplate shaped, sized, and configured to be positioned within the internal cavity defines a first fiber management area, a second fiber management area, and a fiber connecting area. The fiber connecting area includes a raised platform having a connection tray, an adapter, and a routing guide positioned on the platform and secured thereto. The connection tray optically joins an optical fiber of a feeder cable from the first fiber management area to a first connector and an optical fiber of a distribution cable from the second fiber management area to a second connector. The first connector and the second connector are routed along the routing guide to the adapter and optically joined to connect the optical fiber of the feeder cable and the optical fiber of the distribution cable.
Abstract:
A closure arrangement for cable splice assemblies having two hinged cover members. The cover members are independently hingedly secured to a central spine. The spine, in turn, is affixed to a portion of the frame of the splice assembly. In operation, the cover members are opened outwardly to expose virtually all of the outer portion of the internal splice components. In the described embodiment, the cover members are secured to one another by clasp or buckle-type closures that engage complimentary tabs.
Abstract:
A multi-port optical connection terminal for use as a branch point in a fiber optic communications network at a distance from a mid-span access location provided on a distribution cable having a plurality of optical fibers. The multi-port terminal includes a base and a cover affixed to the base. A stub cable port formed through one of the base and the cover receives a stub cable having at least one optical fiber extending continuously from the multi-port terminal to the mid-span access location. A first end of the optical fiber is optically connected to a respective optical fiber of the distribution cable at the mid-span access location and a fiber optic connector is mounted upon the second end. At least one connector port is provided on the multi-port terminal for receiving the fiber optic connector and a connectorized end of a fiber optic drop cable extending from the multi-port terminal.
Abstract:
A splice closure contains multiple splice trays that can be individually pivoted and accessed so that the splice closure is capable of optimally carrying and providing access to numerous optical fibers and optical fiber splices. The splice closure has a housing defining an internal cavity and at least one opening to the internal cavity. An end cap is capable of occluding the opening of the housing to provide an enclosed configuration. A support frame has opposite front and rear ends, the front end of the support frame is connected to the end cap, and the support frame is capable of being positioned within the internal cavity of the housing during the enclosed configuration. The support frame extends in a longitudinal direction between the front and rear ends, and defines a frame axis that extends in the longitudinal direction. The multiple splice trays are pivotally carried by the support frame so that there are a plurality of axes of rotation that are generally parallel to the frame axis and about which the splice trays are respectively pivotable. Biasing mechanisms are operative for releasably holding the splice trays to the support frame.