摘要:
Vapor deposition systems and methods associated with the same are provided. The systems may be designed to include features that can promote high quality deposition; simplify manufacture, modification and use; as well as, reduce the footprint of the system, amongst other advantages.
摘要:
A non-volatile memory array includes a plurality of memory cells. Each memory cell includes a magnetic tunnel junction device having a first free ferromagnetic layer, a second free ferromagnetic layer and a highly conductive layer. The first ferromagnetic layer of each magnetic tunnel junction device extends in a direction that is substantially parallel to the second ferromagnetic layer of the magnetic tunnel junction device. The highly conductive layer of each magnetic tunnel junction device is formed between the first ferromagnetic layer and the second ferromagnetic layer of the magnetic tunnel junction device. A write current through each selected memory cell flows into the highly conductive layer and along at least a portion of the highly conductive layer. A self-field associated with the write current changes a first predetermined magnetization of the first and second ferromagnetic layers to a second predetermined magnetization. In a second embodiment, each memory cell includes a magnetic tunnel junction device having a first free ferromagnetic layer, a second pinned ferromagnetic layer, and a tunneling barrier layer formed between the first and second ferromagnetic layers. The first free ferromagnetic layer has a magnetization in a form of a vortex. The second pinned ferromagnetic layer has substantially the same shape as the shape of the first free ferromagnetic layer and a magnetization in a form of a vortex. A write current flows through the memory cell and producing a self-field that changes a magnetic vortex state of the first free ferromagnetic layer from a first predetermined handedness to a second predetermined handedness.
摘要:
An electronic system includes a three terminal device having a light emitting portion and a magnetically sensitive portion. The magnetically sensitive portion is for modulating light emission from the light emitting portion. The device is a spin valve transistor having a light-emitting quantum well in its collector. The device can convert a magnetic digital signal to both an electrical digital signal and an optical digital signal, wherein either or both of these signals can be provided as a device output. The magnetically sensitive portion of the device is formed of a pair of magnetically permeable layers. When the layers are aligned electron current can pass through with sufficient energy to reach a quantum well where they recombine, generating light. The device may be used to read a magnetic storage medium, such as a disk drive. Or it can be used to provide a display or a memory array composed of single device magnetic write, optical read memory cells. Amplification can be provided to the transistor by adjusting the collector base voltage to provide secondary electrons by impact ionization to provide greater electron current and a correspondingly larger optical emission signal.
摘要:
A spin valve transistor sensor is provided having a emitter element, a collector element and a common base element. The negatively biased emitter element injects a spin polarized hot electron current into the base element by tunneling from a ferromagnetic pinned layer to a ferromagnetic free layer through a first tunnel barrier layer. The positively biased collector element, comprising a second tunnel barrier layer and a nonmagnetic metal layer, collects the fraction of the hot electron current that passes through the base element and over the barrier height of the second tunnel barrier layer. The hot electron current is strongly spin polarized and due to the GMR effect in the magnetic tunnel junction element, the magnitude of the base-collector current is strongly dependent on external magnetic (signal) fields. A process is provided for fabrication of a spin valve transistor sensor suitable for high density magnetic recording applications.
摘要:
An electronic circuit is formed by closely spacing metallic gate and drain interconnects to a flexible portion of a source interconnect. A gate voltage results in electrostatic attraction and lateral mechanical movement of the flexible source interconnect portion and causes an electrical short between source and drain. VanderWaals attraction between contacting source and drain can be used to provide volatile switching (springy thicker source portion) and non-volatile switching (limp thinner source portion). In accordance with the invention, an easily fabricated, high speed, low power, radiation hard, temperature independent, integrated reconfigurable electronic circuit with embedded logic and non-volatile memory can be realized. The switch uses patterned interconnect material for its structure and can be incorporated to a 3D layered structure consisting of three dimensional interconnect in which different layers and portions of the circuits are linked through volatile and non-volatile switches.
摘要:
An electronic circuit is formed by closely spacing metallic gate and drain interconnects to a flexible portion of a source interconnect. A gate voltage results in electrostatic attraction and lateral mechanical movement of the flexible source interconnect portion and causes an electrical short between source and drain. VanderWaals attraction between contacting source and drain can be used to provide volatile switching (springy thicker source portion) and non-volatile switching (limp thinner source portion). In accordance with the invention, an easily fabricated, high speed, low power, radiation hard, temperature independent, integrated reconfigurable electronic circuit with embedded logic and non-volatile memory can be realized. The switch uses patterned interconnect material for its structure and can be incorporated to a 3D layered structure consisting of three dimensional interconnect in which different layers and portions of the circuits are linked through volatile and non-volatile switches.
摘要:
An electronic circuit is formed by closely spacing metallic gate and drain interconnects to a flexible portion of a source interconnect. A gate voltage results in electrostatic attraction and lateral mechanical movement of the flexible source interconnect portion and causes an electrical short between source and drain. VanderWaals attraction between contacting source and drain can be used to provide volatile switching (springy thicker source portion) and non-volatile switching (limp thinner source portion). In accordance with the invention, an easily fabricated, high speed, low power, radiation hard, temperature independent, integrated reconfigurable electronic circuit with embedded logic and non-volatile memory can be realized. The switch uses patterned interconnect material for its structure and can be incorporated to a 3D layered structure consisting of three dimensional interconnect in which different layers and portions of the circuits are linked through volatile and non-volatile switches.
摘要:
A non-volatile memory array having a substrate, a first plurality of electrically conductive traces formed on the substrate, a second plurality of electrically conductive traces formed on the substrate and overlapping first plurality of traces at a plurality of intersection regions, and a plurality of memory cells. Each memory cell is located at an intersection region between one of the first plurality of traces and one of the second plurality of traces. At least one memory cell includes a non-linear magnetic tunnel junction storage element. The non-linear magnetic tunnel junction storage element has at least a first ferromagnetic layer, a barrier layer and a second ferromagnetic layer. The non-linear magnetic tunnel junction storage element has a non-linearity that is defined by a current having a first magnitude flowing through the non-linear magnetic tunnel junction storage element for a bias across the non-linear magnetic tunnel junction storage element of about 0.5 VA that is ten times or more smaller than a current having a second magnitude flowing through the non-linear magnetic tunnel junction storage element for a bias across the non-linear magnetic tunnel junction storage element of about 1 VA, where VA is an operating voltage for a memory cell. The non-linearity is used for minimizing sneak currents through unselected cells, and allowing read or write selection of a particular memory element in a large array.
摘要:
A non-volatile memory array includes first and second pluralities of electrically conductive traces formed on a substrate. The second plurality of electrically conductive traces overlap first plurality of traces at a plurality of intersection regions. Each of a plurality of memory cells is located at an intersection region between one of the first plurality of traces and one of the second plurality of traces. At least one of the memory cells includes a non-linear selection element in series with a magnetic tunnel junction storage element. The non-linear selection element includes at least a first metallic electrode layer, a barrier layer and a second metallic electrode layer metal. The non-linear selection element has a non-linearity defined by a current having a first magnitude flowing through the non-linear selection element for a first bias voltage across the non-linear selection element that is ten times or more smaller than a current having a second magnitude flowing through the non-linear selection element for a second bias voltage across the non-linear selection element, such that the second bias voltage is about two times greater than the first bias voltage. The magnetic tunnel junction storage element includes at least a first ferromagnetic layer, a thin insulating layer and a second ferromagnetic layer.