Abstract:
Systems and methods are provided for processing a group of essays to develop a classifier that detects nonsensical computer-generated essays. A data structure associated with a group of essays is accessed, wherein the group of essays includes nonsensical computer-generated essays and good-faith essays. Both the nonsensical computer-generated essays and the good-faith essays are assigned feature values. The distribution of feature values between the nonsensical computer-generated essays and the good-faith essays is measured. A classifier that detects whether an essay is a nonsensical computer-generated essay is developed, wherein the classifier is developed using the distribution of feature values.
Abstract:
Data is received that encapsulates a document of text. The text is then segmented into a plurality of semantically coherent units using a coherence-aware text segmentation (CATS) machine learning model. Data is then provided that characterizes the segmenting. Related apparatus, systems, techniques and articles are also described.
Abstract:
Systems and methods are provided for the design and implementation of experiments that facilitate the investigation of process data. The experiments involve recording the completion of a task by participants and then playing back the video of task completion to automatically probe participants about their affective, behavioral, and cognitive experiences. As a result of this system, information about affective, behavioral, and cognitive processes can be more easily investigated by researchers without computer programming knowledge. Corresponding apparatuses, systems, and methods are also discussed.
Abstract:
A system for end-to-end automated scoring is disclosed. The system includes a word embedding layer for converting a plurality of ASR outputs into input tensors; a neural network lexical model encoder receiving the input tensors; a neural network acoustic model encoder implementing AM posterior probability, word duration, mean value of pitch and mean value of intensity based on a plurality of cues; and a linear regression module, for receiving concatenated encoded features from the neural network lexical model encoder and the neural network acoustic model encoder.
Abstract:
Systems and methods for training raters to rate constructed responses to tasks are described herein. In one embodiment, a plurality of trainee raters are selected without regard to their prior experience. The trainee raters are then train in individual training sessions, during which they are asked to rate responses to a task. Each session presents to the trainee rater the task, a rating rubric, and training responses to the task. The training program receives ratings assigned by the trainee rater to the training responses through a graphical user interface. Upon receiving the assigned rating, the training program presents feedback substantially immediately and determines a score for the trainee rater's assigned rating. Thereafter, qualified raters are selected from the plurality of trainee raters based upon their performance during the training sessions as compared with a statistical model. Operational constructed responses are then assigned to rated by the qualified raters.
Abstract:
Systems and methods described herein utilize supervised machine learning to generate a model for scoring interview responses. The system may access a training response, which in one embodiment is an audiovisual recording of a person responding to an interview question. The training response may have an assigned human-determined score. The system may extract at least one delivery feature and at least one content feature from the audiovisual recording of the training response, and use the extracted features and the human-determined score to train a response scoring model for scoring interview responses. The response scoring model may be configured based on the training to automatically assign scores to audiovisual recordings of interview responses. The scores for interview responses may be used by interviewers to assess candidates.
Abstract:
Systems and methods are provided for automatically scoring a constructed response. The constructed response is processed to generate a plurality of numerical vectors that is representative of the constructed response. A model is applied to the plurality of numerical vectors. The model includes an input layer configured to receive the plurality of numerical vectors, the input layer being connected to a following layer of the model via a first plurality of connections. Each of the connections has a first weight. An intermediate layer of nodes is configured to receive inputs from an immediately-preceding layer of the model via a second plurality of connections, each of the connections having a second weight. An output layer is connected to the intermediate layer via a third plurality of connections, each of the connections having a third weight. The output layer is configured to generate a score for the constructed response.
Abstract:
In accordance with the teachings described herein, systems and methods are provided for measuring a user's comprehension of subject matter of a text. A summary generated by the user is received, where the summary summarizes the text. The summary is processed to determine a first numerical measure indicative of a similarity between the summary and a reference summary. The summary is processed to determine a second numerical measure indicative of a degree to which a single sentence of the summary summarizes an entirety of the text. The summary is processed to determine a third numerical measure indicative of a degree of copying in the summary of multi-word sequences present in the text. A numerical model is applied to the first numerical measure, the second numerical measure and the third numerical measure to determine a score for the summary indicative of the user's comprehension of the subject matter of the text.
Abstract:
Systems and methods are provided for scoring a speech sample. Automatic speech recognition is performed on the speech sample using an automatic speech recognition system to generate a transcription of the sample. Words in the transcription are associated with parts of speech, and part of speech sequences are extracted from the parts of speech associations. A grammar metric is generated based on the part of speech sequences, and the speech sample is scored based on the grammar metric.
Abstract:
Systems and methods are provided for a computer-implemented method for identifying pairs of cohesive words within a text. A supervised model is trained to detect cohesive words within a text to be scored. Training the supervised model includes identifying a plurality of pairs of candidate cohesive words in a training essay and an order associated with the pairs of candidate cohesive words based on an order of words in the training essay. The pairs of candidate cohesive words are filtered to form a set of evaluation pairs. The evaluation pairs are provided via a graphical user interface based on the order associated with the pairs of candidate cohesive words. An indication of cohesion or no cohesion is received for the evaluation pairs via the graphical user interface. The supervised model is trained based on the evaluation pairs and the received indications.