Abstract:
A method for high-speed scheduling and arbitration of events for computing and networking is disclosed. The method includes the software and hardware implementation of a unique data structure, known as a pile, for scheduling and arbitration of events. According to the method, events are stored in loosely sorted order in piles, with the next event to be processed residing in the root node of the pile. The pipelining of the insertion and removal of events from the piles allows for simultaneous event removal and next event calculation. The method's inherent parallelisms thus allow for the automatic rescheduling of removed events for re-execution at a future time, also known as event swapping. The method executes in O(1) time.
Abstract:
A method and apparatus for converting documents from one format to another in a speed efficient way involves a hardware module which implements several operating pipeline stages which work in parallel. The transformations are supplied and decomposed into sequences of control units. The transformation of documents consists of applying control unit sequences to input documents. The control units are themselves executed by a set of dedicated hardware resources. Furthermore the pipeline is capable of operating on more than one document at a time. Fast document transformation is a key capability of document processing systems. The use of parallel processing techniques and hardware that implements highly specialized transformation resources make this invention particularly scalable for its use in large, high speed content networks.
Abstract:
A method and means to reduce memory requirements for storing statistics by recording, in a separate overflow memory, the most significant bits of counters requiring more bits than provided in the main statistics memory. A binary CAM provides the linking mechanism between the main and overflow memories.
Abstract:
A method for high-speed scheduling and arbitration of events for computing and networking is disclosed. The method includes the software and hardware implementation of a unique data structure, known as a pile, for scheduling and arbitration of events. According to the method, events are stored in loosely sorted order in piles, with the next event to be processed residing in the root node of the pile. The pipelining of the insertion and removal of events from the piles allows for simultaneous event removal and next event calculation. The method's inherent parallelisms thus allow for the automatic rescheduling of removed events for re-execution at a future time, also known as event swapping. The method executes in O(1) time.
Abstract:
An improved data structure is provided by modifying a public-domain data structure known as a “heap”. When these improvements are applied, the resultant data structure is known as a “pile.” This invention further described a pipelined hardware implementation of a pile. Piles offer many advantages over heaps: they allow for fast, pipelined hardware implementations with increased throughput, making piles practical for a wide variety of new applications; they remove the requirement to track and update the last position in the heap; they reduce the number of memory reads accesses required during a delete operation; they require only ordinary, inexpensive RAM for storage in a fast, pipelined implementation; and they allow a random mixture of back-to-back insert, remove, and swap operations to be performed without stalling the pipeline.
Abstract:
An improved data structure is provided by modifying a public-domain data structure known as a “heap”. When these improvements are applied, the resultant data structure is known as a “pile.” This invention further described a pipelined hardware implementation of a pile. Piles offer many advantages over heaps: they allow for fast, pipelined hardware implementations with increased throughput, making piles practical for a wide variety of new applications; they remove the requirement to track and update the last position in the heap; they reduce the number of memory reads accesses required during a delete operation; they require only ordinary, inexpensive RAM for storage in a fast, pipelined implementation; and they allow a random mixture of back-to-back insert, remove, and swap operations to be performed without stalling the pipeline.
Abstract:
A method for high-speed scheduling and arbitration of events for computing and networking is disclosed. The method includes the software and hardware implementation of a unique data structure, known as a pile, for scheduling and arbitration of events. According to the method, events are stored in loosely sorted order in piles, with the next event to be processed residing in the root node of the pile. The pipelining of the insertion and removal of events from the piles allows for simultaneous event removal and next event calculation. The method's inherent parallelisms thus allow for the automatic rescheduling of removed events for re-execution at a future time, also known as event swapping. The method executes in O(1) time.
Abstract:
An improved data structure is provided by modifying a public-domain data structure known as a “heap”. When these improvements are applied, the resultant data structure is known as a “pile.” This invention further describes a pipelined hardware implementation of a pile. Piles offer many advantages over heaps: they allow for fast, pipelined hardware implementations with increased throughput, making piles practical for a wide variety of new applications; they remove the requirement to track and update the last position in the heap; they reduce the number of memory reads accesses required during a delete operation; they require only ordinary, inexpensive RAM for storage in a fast, pipelined implementation; and they allow a random mixture of back-to-back insert, remove, and swap operations to be performed without stalling the pipeline.
Abstract:
An improved data structure is provided by modifying a public-domain data structure known as a “heap”. When these improvements are applied, the resultant data structure is known as a “pile.” This invention further describes a pipelined hardware implementation of a pile. Piles offer many advantages over heaps: they allow for fast, pipelined hardware implementations with increased throughput, making piles practical for a wide variety of new applications; they remove the requirement to track and update the last position in the heap; they reduce the number of memory reads accesses required during a delete operation; they require only ordinary, inexpensive RAM for storage in a fast, pipelined implementation; and they allow a random mixture of back-to-back insert, remove, and swap operations to be performed without stalling the pipeline.