Abstract:
A processor device is disclosed that includes a register file with a combined condition code register for scalar and vector operations. The processor device utilizes the combined condition code register for scalar and vector operations. Further, a compare operation can store resulting bits in the combined condition code register and a conditional operation can utilize the combined condition code register bits for evaluating a condition.
Abstract:
A method and system to indicate which page within a software-managed page table triggers an exception within a microprocessor, such as, for example, a digital signal processor, wherein a software-managed translation lookaside buffer (TLB) module receives a virtual address produced by an instruction within a Very Long Instruction Word (VLIW) packet, such as, for example, a fetch instruction, and further compares the virtual address to each stored TLB entry. If a match exists, then the TLB module outputs a corresponding mapped physical address for the instruction. Otherwise, if the VLIW packet spans two pages, where a first page is present as a TLB entry within the TLB module and the second page is missing from the stored TLB entries, an indication bit within a data field of a control register is set to identify the TLB miss exception to a software management unit. The software management unit retrieves the indication bit information from the register and further performs a page table look-up within the software-managed page table using the indication bit information in order to retrieve the missing page information. Subsequently, the missing page information is written into a new TLB entry within the TLB module for subsequent virtual address translation and execution of the packet of instructions.
Abstract:
A shared translation look-aside buffer method comprises saving data stored in a first selected set of registers to a predetermined section of a thread-specific area in memory upon encountering an exception/interrupt, re-enabling exceptions and optionally interrupts, addressing a cause of the exception/interrupt while safely permitting another exception, and restoring the saved data to the first selected set of registers.
Abstract:
A processor device is disclosed and includes a memory and a sequencer that is responsive to the memory. The sequencer supports very long instruction word (VLIW) type instructions and at least one VLIW instruction packet uses a number of operands during execution. The processor device further includes a plurality of instruction execution units responsive to the sequencer and a plurality of register files. Each of the plurality of register files includes a plurality of registers and the plurality of register files are coupled to the plurality of instruction execution units. Further, each of the plurality of register files includes a number of data read ports and the number of data read ports of each of the plurality of register files is less than the number of operands used by the at least one VLIW instruction packet.
Abstract:
A processor device is disclosed and includes a memory and a sequencer that is responsive to the memory. The sequencer can support very long instruction word (VLIW) instructions and superscalar instructions. The processor device further includes a first instruction execution unit responsive to the sequencer, a second instruction execution unit responsive to the sequencer, a third instruction execution unit responsive to the sequencer, and a fourth instruction execution unit responsive to the sequencer. Further, the processor device includes a plurality of register files and each of the plurality of register files includes a plurality of registers. The plurality of register files are coupled to the sequencer and coupled to the first instruction execution unit, the second instruction execution unit, the third instruction execution unit, and the fourth instruction execution unit.
Abstract:
Techniques for processing transmissions in a communications (e.g., CDMA) system. An aspect of the disclosed subject matter includes a method for processing instructions on a multithreaded processor. The multithreaded processor processes a plurality of threads via a plurality of processor pipelines. The method includes the step determining the operating frequency, F, at which the multithreaded processor operates. Then, the method determines a variable thread switch timeout state for triggering the switching of the processing among the plurality of active threads. The variable thread switch timeout state varies so that each of the plurality of active threads operates at a frequency of an allocated portion of the frequency, F. The allocated portion at which the active threads operate is determined at least in part in order to optimize the operation of the multithreaded processor. The method further switches the processing from a first one of the active threads to a next one of the active threads upon the occurrence of the variable thread switch timeout state.
Abstract:
An interleaved multithreading pipeline operating method comprises reading an instruction packet containing at least two instructions, steering a first instruction of the instruction packet to a first execution unit for execution and generating a first result, steering a second instruction of the instruction packet to a second execution unit for execution using the first result and generating a second result, and storing the second result.
Abstract:
A system and method to execute a linear feedback-shift instruction is disclosed. In a particular embodiment the method includes executing an instruction at a processor by receiving source data and executing a bitwise logical operation on the source data and on reference data to generate intermediate data. The method further includes determining a parity value of the intermediate data, shifting the source data, and entering the parity value of the intermediate data into a data field of the shifted source data to produce resultant data.
Abstract:
A method and system to perform shifting and rounding operations within a microprocessor, such as, for example, a digital signal processor, during execution of a single instruction are described. An instruction to shift and round data within a source register unit of a register file structure is received within a processing unit. The instruction includes a shifting bit value indicating the bit amount for a right shift operation and is subsequently executed to shift data within the source register unit to the right by an encoded bit value, calculated by subtracting a single bit from the shifting bit value contained within the instruction. A predetermined bit extension is further inserted within the vacated bit positions adjacent to the shifted data. Subsequently, an addition operation is performed on the shifted data and a unitary integer value is added to the shifted data to obtain resulting data. Finally, the resulting data is further shifted to the right by a single bit value and a predetermined bit extension is inserted within the vacated bit position to obtain the final rounded data results to be stored within a destination register unit.
Abstract:
A method and system to indicate which page within a software-managed page table triggers an exception within a microprocessor, such as, for example, a digital signal processor, wherein a software-managed translation lookaside buffer (TLB) module receives a virtual address produced by an instruction within a Very Long Instruction Word (VLIW) packet, such as, for example, a fetch instruction, and further compares the virtual address to each stored TLB entry. If a match exists, then the TLB module outputs a corresponding mapped physical address for the instruction. Otherwise, if the VLIW packet spans two pages, where a first page is present as a TLB entry within the TLB module and the second page is missing from the stored TLB entries, an indication bit within a data field of a control register is set to identify the TLB miss exception to a software management unit. The software management unit retrieves the indication bit information from the register and further performs a page table look-up within the software-managed page table using the indication bit information in order to retrieve the missing page information. Subsequently, the missing page information is written into a new TLB entry within the TLB module for subsequent virtual address translation and execution of the packet of instructions.