摘要:
Biodegradable polymeric microparticle compositions containing one or more active agents, especially those useful for treating or preventing one or more diseases or disorders of the eye, and methods of making and using thereof, are described. In a preferred embodiment, the microparticle compositions contain one or more active agents useful for managing elevated intraocular pressure (IOP) in the eye. Relatively hydrophilic, and preferably carboxylated, polymeric materials such as PLGA are used for a drug such as timolol maleate, which is relatively water soluble, to increase drug loading. Higher molecular weight polymers, as well as the ratio of LA (which has a longer degradation time, up to one to two years) to GA (which has a short degradation time, as short as a few days to a week), are used to provide release over a longer period of time.
摘要:
Biodegradable polymeric microparticle compositions containing one or more active agents, especially those useful for treating or preventing or one or more diseases or disorders of the eye, and methods of making and using thereof, are described. The microsphere compositions release an effective amount of the one or more active agents for a period greater than 14 days in vivo, preferably greater than 60 days in vivo, more preferably up to 73 days in vivo, more preferably greater than 90 days in vivo, even more preferably over 100 days in vivo, and most preferably greater than 107 days in vivo. In a preferred embodiment, the microparticle compositions contain one or more active agents such as AG1478 to induce nerve regeneration, specifically regeneration of the optic nerve useful for managing elevated intraocular pressure (TOP) in the eye.
摘要:
A method of producing a tissue engineering construct. The method includes providing a population of embryonic stem cells, seeding the embryonic stem cells on a cell support matrix, and exposing the embryonic stem cells to at least one agent selected to promote differentiation of the stem cells along a predetermined cell lineage or into a specific cell type. The step of exposing may be performed before or after the step of seeding.
摘要:
A pharmaceutical composition is provided comprising microparticles encapsulating high weight percent active agent and providing sustained release over a prolonged period of time of active agent levels bioequivalent to direct administration of active agent. Polymeric microparticle compositions containing one or more active agents, and methods of making and using thereof, are described. The microparticles are optimized for the agent to be delivered, so that the hydrophobicity or hydrophilicity of the polymer and charge of the polymer maximizes loading of the agent, and the selection and molecular weight of the polymers maximize release of an effective amount of the active agent for the desired period of time.
摘要:
Biodegradable polymeric microparticle compositions containing one or more active agents, especially those useful for treating or preventing or one or more diseases or disorders of the eye, and methods of making and using thereof, are described. The microsphere compositions release an effective amount of the one or more active agents for a period greater than 14 days in vivo, preferably greater than 60 days in vivo, more preferably up to 73 days in vivo, more preferably greater than 90 days in vivo, even more preferably over 100 days in vivo, and most preferably greater than 107 days in vivo. In a preferred embodiment, the microparticle compositions contain one or more active agents useful for managing elevated intraocular pressure (TOP) in the eye. In one embodiment, the microspheres are formed from polylactide-co-glycolide (“PLGA”); in another embodiment, the microspheres are formed from a blend PLGA and poly lactic acid (“PLA”). Relatively hydrophilic, and preferably carboxylated, polymeric materials such as PLGA are used for a drug such as timolol maleate, which is relatively water soluble, to increase drug loading. Higher molecular weight polymers, as well as the ratio of LA (which has a longer degradation time, up to one to two years) to GA (which has a short degradation time, as short as a few days to a week), are used to provide release over a longer period of time. The combination of drug loading and release rate, as well as the minimization of initial burst release, result in prolonged release of a higher amount of drug.