Abstract:
An implantable valve having a valve element or leaflet and a base that is attachable to a vessel wall using a connector such as a screw, pin or a staple. The valve can be implanted using a catheter to position the valve in a desired location and drive the connector into the vessel wall. The valve can be used as a venous valve to control blood flow within the veins, arteries, heart or the aorta of a patient.
Abstract:
An implantable valve having a valve element or leaflet and a base that is attachable to a vessel wall using a connector such as a screw, pin or a staple. The valve can be implanted using a catheter to position the valve in a desired location and drive the connector into the vessel wall. The valve can be used as a venous valve to control blood flow within the veins, arteries, heart or the aorta of a patient.
Abstract:
The device comprises a prosthesis designed as a hollow body compressed against the action of restoring spring forces to a cross section reduced relative to an expanded use position, and held in this position by a strippable sheath. After the sheath is stripped, the prosthesis automatically expands to a cross section corresponding to the use position. The sheath, which can be a meshwork in the approximate form of crocheted material, extends over the entire length of the prosthesis and consists of at least one continuous thread and at least one drawstring. The prosthesis, held in the radially compressed position by the sheath, can be mounted displaceably on a feed wire or non-axially-displaceably on the insertion end of a probe or a catheter.
Abstract:
A stent for reinforcement of the lumen of a peristaltic organ is formed by knitting preferably a nitinol wire into a pattern of overlapping loops selected such that from a relaxed state each row of loops may shift axially relative to and independently of the rows on either side. This local lengthening and shortening accommodate peristalsis of the organ without migrating within the organ. A stent is also shown which comprises two resilient cylindrical mesh layers and a semi-permeable compliant membrane such as expanded polytetrafluoroethylene, sandwiched between. The two mesh layers may be knit of a flexible filament, and the knit may be configured so that the stent can adapt to peristalsis of the body lumen. A method is also shown of manufacturing a delivery system for a resilient tubular device such as a stent so that the device can be inserted into the body in a substantially reduced diameter. The method uses a confining block having a bore and a slot leading into the bore. The tubular device is pinched and inserted into the bore and the slot, two mandrels are inserted into the bore, one inside the device and one outside and the mandrels are revolved about each other to roll the device on itself.
Abstract:
A known method for treating pathological body vessels is the implantation of stents as an extended filament, by means of a catheter, which springs into a given form at the implantation site, as a result of its thermo-memory property or its elasticity. The invention relates to a new kind of stent, created in order to improve the flexibility and stability of the stent. This is achieved in that the stent filament or stent filaments are present in the form of at least two opposed spirals. The filament consists of a material with high elasticity or with thermo-memory properties. The stent can be covered with a structure made of pieces of fabric and/or fibers and serves in this way as a stent graft. The new stent demonstrates high stability and flexibility. The stent can be introduced into a body vessel by means of a catheter lumen, which essentially corresponds to the outside diameter of the filaments forming the stent which expands in the point of destination to a larger-lumen tube-shaped implant.
Abstract:
An endoprosthesis is percutaneously implantable in the body of a patient by means of a catheter, this endoprosthesis being changeable from a small lumen during insertion to a larger lumen conforming to the functional position. This implant has a hose-like netting produced from at least one elastic filament, such netting having the structure of a wire mesh fence with meshes forming polygons, wherein the filaments each grip around each other in the corner points of the meshes following each other in the direction of the longitudinal axis of the prosthesis. According to an alternative embodiment, the endoprosthesis is a hose-like netting produced from elastic filament, such netting having the structure of a wire mesh fence with meshes forming polygons, wherein the meshes have connection zones with two filaments twisted around each other, such connection zones in each case extending in the longitudinal direction of the prosthesis.
Abstract:
The device comprises a prosthesis designed as a hollow body compressed against the action of restoring spring forces to a cross section reduced relative to an expanded use position, and held in this position by a strippable sheath. After the sheath is stripped, the prosthesis automatically expands to a cross section corresponding to the use position. The sheath, which can be a meshwork in the approximate form of crocheted material, extends over the entire length of the prosthesis and consists of at least one continuous thread and at least one drawstring. The prosthesis, held in the radially compressed position by the sheath, can be mounted displaceably on a feed wire or non-axially-displaceably on the insertion end of a probe or a catheter.
Abstract:
A stent for reinforcement of the lumen of a peristaltic organ is formed by knitting preferably a nitinol wire into a pattern of overlapping loops selected such that from a relaxed state each row of loops may shift axially relative to and independently of the rows on either side. This local lengthening and shortening accommodate peristalsis of the organ without migrating within the organ. A stent is also shown which comprises two resilient cylindrical mesh layers and a semi-permeable compliant membrane such as expanded polytetrafluoroethylene, sandwiched between. The two mesh layers may be knit of a flexible filament, and the knit may be configured so that the stent can adapt to peristalsis of the body lumen. A method is also shown of manufacturing a delivery system for a resilient tubular device such as a stent so that the device can be inserted into the body in a substantially reduced diameter. The method uses a confining block having a bore and a slot leading into the bore. The tubular device is pinched and inserted into the bore and the slot, two mandrels are inserted into the bore, one inside the device and one outside and the mandrels are revolved about each other to roll the device on itself.
Abstract:
The device comprises a prosthesis designed as a hollow body compressed against the action of restoring spring forces to a cross section reduced relative to an expanded use position, and held in this position by a strippable sheath. After the sheath is stripped, the prosthesis automatically expands to a cross section corresponding to the use position. The sheath, which can be a meshwork in the approximate form of crocheted material, extends over the entire length of the prosthesis and consists of at least one continuous thread and at least one drawstring. The prosthesis, held in the radially compressed position by the sheath, can be mounted displacebly on a feed wire or non-axially-displacebly on the insertion end of a probe or a catheter.
Abstract:
The implantation device for treating damaged or diseased tissue within the region of the walls of hollow organs comprises a catheter and at least one securing means detachably received in a receptacle of the catheter. After the catheter has been placed in its appropriate position in the hollow organ, said securing means is implantable in the wall of the hollow organ with a. least one implantation segment of said means. The catheter may be provided with means for receiving a protective cover for covering larger diseased areas of the tissue, as well as with means for tensioning the hollow organ prior to and in the course of the implantation process. The securing means are nails, staples, screws or spirals having a length adapted to the thickness of the wall of the hollow organ to be treated. Such securing means are implanted in the vascular wall with the help of an element of the catheter, for example a pusher axially movably received in the catheter.