Abstract:
A cable protective shield assembly is provided for managing the position of computer cables. The assembly includes a base plate having a number of spacers formed on one surface, a cover plate having a number of bores extending through the plate at locations designated in alignment with the spacers of the base plate, and a corresponding number of fasteners for insertion through the bores of the cover plate into the spacers of the base plate to rigidly couple the plates together. The height of the spacers create a standoff distance between the base plate and cover plate defining a space for computer cables to extend. The spacers are also positioned across the base plate surface as to create specific passageways for the cables to be located. One or more ports can be placed along the perimeter of the cover plate to allow access to cable connectors while generally maintaining the organized position of the cables. The assembly shields the cables from electromagnetic energy and filters noise superimposed on the cables by electromagnetic energy present in the chassis.
Abstract:
An apparatus providing the capability to scan transmissive media is presented. The apparatus comprises an illuminating lid for an optical scanner. The lid is hingeably attached to the base of the scanner and provides a backlight for transmissive media. A light source, located within the lid, projects light through a translucent screen, through an X-ray for example, onto photodetector arrays located within the base of the scanner. Control means are provided to maintain the light intensity of the light source located within the lid so that a flat light profile is provided during the scan.
Abstract:
A self-contained mobile optical scanning system having an image scanner contained within a hollow inside space defined by mated engagement of an upper housing and a lower housing having corresponding upper and lower transparent windows having reduced margins and a scanning control interface rotatable through the enclosed space which allows scanning through the upper transparent window in either the upright or inverted condition by alignment of viewable indicator marks and overlap indicators in relation to an article which allows stitched alignment of a plurality of scanning cycles to generate images embeddable with metadata or data files.
Abstract:
A drive unit quick release apparatus is provided on one guide rail of a pair of guide rails mounted to the drive unit for engaging and releasing a drive unit from a chassis. The apparatus includes a resilient cantilevered arm mounted to the drive unit, an engaging structure positioned on the arm to selectively maintain the drive unit in the chassis, and a lever connected to the resilient arm to facilitate disengaging the engagement structure and removing the drive unit from the chassis. The lever is positioned generally perpendicular to the resilient arm and to the axis of travel of the drive unit out of a bay in the chassis. In this configuration, a force applied to the lever causes the resilient arm to flex inwardly and disengage the engaging structure from a retaining slot in the chassis. Additionally, the continued application of the force to the lever moves the attached drive unit out of the chassis.
Abstract:
A method and apparatus for centering an optical component, such as a lens element, within an optical bore sleeve. The optical component has an outer perimeter, and the optical bore sleeve has an inner perimeter for receiving the outer perimeter of the optical component. A plurality of deformable ridges are interposed between the outer perimeter of the optical component and the inner perimeter of the sleeve for aligning the optical component and the sleeve along a common optical axis as the ridges are deformed upon insertion of the optical component into the sleeve.
Abstract:
Techniques are described for securing a magnetic head to a support carrier for the head in a magnetic storage device (e.g., a tape drive apparatus or disk drive apparatus). One such technique involves temporarily supporting a magnetic head on a fixture which is adapted to cooperate with openings on the magnetic head to orient the head in a predetermined alignment attitude so that the head may be permanently mounted in the magnetic storage device. In another embodiment the fixture may be part of the magnetic storage device itself. There are also provided various embodiments of magnetic heads having openings for accessing a planar interface between the halves of a magnetic core within the head. By accessing this interface the magnetic head may be aligned in a predetermined alignment attitude.
Abstract:
An apparatus is provided for storing and accessing a cable within a chassis. The apparatus comprises a filler drive drawer having a base shelf, an upper biasing arm disposed on the base shelf and a pair of resilient raised arm members positioned on the base shelf laterally on opposite sides of the upper biasing arm. The upper biasing arm has a flange that extends upward from the base shelf and a cantilever member extending therefrom. The cantilever member extends at least partially downward to provide an upper contact surface for a cable connector positioned below the upper biasing arm. The upper biasing arm and pair of resilient arm members are cooperatively arranged to releasably engage the cable connector within the filler drive drawer. The drawer can easily be slid into or out of the chassis to access the cable connector.
Abstract:
A contact image sensor includes a light sensitive optical detector and a light source mounted on a mounting surface. A light guide is located under the light source and is oriented to direct a light path from the light source to a scan line region under the light sensitive optical detector.
Abstract:
A hand-held optical scanner comprising an optical sensor for generating a data signal representative of a scanned object; a housing for hand-displaceably supporting the optical sensor; a roller mounted on the housing for enabling rolling displacement of the housing over a scanned object in a predetermined scan direction; a displacement sensing device for sensing the angular displacement of the roller and generating a displacement signal representative thereof; a motor drivingly linked to the roller for applying a driving torque thereto; a controller for actuating the motor responsive to the displacement signal for angularly accelerating and decelerating the roller for urging an operator to hand displace the housing across a scanned object within a predetermined speed range which is optimal for scanning.
Abstract:
An integrated optical imaging assembly for scanning an object may comprise a printed circuit board having an upper end and a lower end. An optical detector is mounted to the upper end of the printed circuit board at an end of an image light path, and a lens system is mounted to the printed circuit board below the optical detector to be interposed in the image light path. A reflector is mounted to the lens in the image light path between the lens and the optical detector to direct the image light path between the lens and the optical detector. An illumination source is mounted to the lower end of the circuit board to illuminate a second end of the image light path below the lens, and an illumination reflector is mounted to the lens opposite the illumination source to direct an illumination light path from the illumination source toward the image light path below the lens.