Abstract:
Provided is a method for producing mesenchymal stem cells from human pluripotent stem cells, the method including: a) forming embryonic bodies from human pluripotent stem cells; b) attaching the embryonic bodies to a culture dish to induce natural differentiation of the embryonic bodies into mesenchymal stem cells; and c) performing continuous proliferative culturing of the mesenchymal stem cells while still maintaining the identity of the mesenchymal stem cells. Also, provided is a standardized method for inducing differentiation of mesenchymal stem cells, which can be broadly applied to all human pluripotent stem cells regardless of a difference in the genetic background thereof. Ultimately, the present invention can continuously mass-produces the mesenchymal stem cells necessary for regenerative medicine and cell therapy by using human pluripotent stem cells, thereby realizing practical uses of cell therapy products, and further the present invention is expected to highly contribute to treatments of incurable diseases, such as cardiovascular diseases and neurological disorders.
Abstract:
Provided is an anode material for an electrode mix comprising a carbon material and a lithium titanium oxide (LTO), wherein a ratio of an average particle size of LTO relative to that of the carbon material is in a range of 0.1 to 20%, and LTO is distributed mainly on a surface of the carbon material. The anode material of the present invention can prevent excessive formation of a SEI film, and is of a high capacity due to a high energy density and exhibits excellent output characteristics and rate characteristics. Further, it has superior electrolyte wettability which consequently results in improved battery performance and life characteristics.
Abstract:
Provided is a non-aqueous electrolyte-based, high-power lithium secondary battery having a long service life and superior safety at both room temperature and high temperature, even after repeated high-current charging and discharging. The battery comprises a cathode active material composed of a mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese composite oxide wherein the cathode active material exhibits the life characteristics that the capacity at 300 cycles is more than 70% relative to the initial capacity, in the provision of satisfying the condition (i) regarding the particle size and the condition (ii) regarding the mixing ratio.
Abstract:
The present invention relates to a composition for suppressing the death of stem cells during suspension culturing, a composition for mass culturing of stem cells, and a method for suppressing cell death of stem cells during suspension culturing. The composition of the present invention can be usefully used for effective single suspension culturing of stem cells, particularly, mesenchymal stem cells, or used for mass suspension culturing under the circumstances in which cell aggregation does not occur.
Abstract:
An anode for a lithium ion secondary battery includes an anode, and a LiF-based coating layer formed with LiF-based particles on a surface of the anode. The LiF-based coating layer has a thickness of 0.05 to 1 μm. The anode allows the LiF-based coating layer created by side reaction of LiPF6 during a battery charging/discharging process to be relatively uniformly formed on the anode surface, thereby elongating the life cycle of a lithium ion secondary battery.
Abstract:
The present invention relates to a method of inducing high activity of human adipose stem cells, highly active stem cells induced by the method, cell therapeutic agents including the highly active stem cells, and a medium for inducing high activity of human adipose stem cells.The method of the present invention enables a long-term culture of human adipose stem cells while maintaining high activity, production yield and differentiation potency of the stem cells through in vitro culture, even in case culture conditions are not appropriate for mature human adipocytes, security of adipocytes is not guaranteed, or adipocytes are diseased.
Abstract:
Provided is an electrode material, which contains an electrode active material, comprising a clay mineral in an amount of the range of 5% by weight or less based on the total weight of the electrode material for increasing the mechanical strength of the electrode material and improving the impregnation ability of an electrolyte.
Abstract:
Provided is a method for producing mesenchymal stem cells from human pluripotent stem cells, the method including: a) forming embryonic bodies from human pluripotent stem cells; b) attaching the embryonic bodies to a culture dish to induce natural differentiation of the embryonic bodies into mesenchymal stem cells; and c) performing continuous proliferative culturing of the mesenchymal stem cells while still maintaining the identity of the mesenchymal stem cells. Also, provided is a standardized method for inducing differentiation of mesenchymal stem cells, which can be broadly applied to all human pluripotent stem cells regardless of a difference in the genetic background thereof. Ultimately, the present invention can continuously mass-produces the mesenchymal stem cells necessary for regenerative medicine and cell therapy by using human pluripotent stem cells, thereby realizing practical uses of cell therapy products, and further the present invention is expected to highly contribute to treatments of incurable diseases, such as cardiovascular diseases and neurological disorders.
Abstract:
The present invention relates to a novel benzopyran derivative having goodantagonistic activity on TGF-β receptor which can be effectively used as a prophylactic and therapeutic agent for liver disease as well as several fibroplasiadiseases such as hepatic fibrosis, liver cirrhosis, pulmonary fibrosis, dermatosclerosis, glomerular fibrosis and the like; and a pharmaceutical use thereof.
Abstract:
Provided is an anode material for an electrode mix comprising a carbon material and a lithium titanium oxide (LTO), wherein a ratio of an average particle size of LTO relative to that of the carbon material is in a range of 0.1 to 20%, and LTO is distributed mainly on a surface of the carbon material. The anode material of the present invention can prevent excessive formation of a SEI film, and is of a high capacity due to a high energy density and exhibits excellent output characteristics and rate characteristics. Further, it has superior electrolyte wettability which consequently results in improved battery performance and life characteristics.