Abstract:
A clutch for an electronic door lock includes a first shaft, a second shaft, a spring, a rheological fluid, and a plunger. The second shaft has an aperture therein and is axially co-aligned with the first shaft and is rotatably mounted adjacent the rotatable first shaft. The spring is disposed in the aperture in the second shaft. The rheological fluid is held within the aperture and is capable of changing viscosities in response to the application of an electrical current across the fluid. The plunger is biased by the spring into selective coupling engagement with the first shaft and is capable of selective motion into the aperture in response to contact by a camming surface of the first shaft due to relative rotation of the first shaft with respect to the second shaft.
Abstract:
A sensor includes a film, at least one piezoelectric strip disposed on the film, a first conductive line disposed on the film, the first conductive line electrically connected to a first portion of the at least one piezoelectric strip, a second conductive line disposed on the film, the second conductive line electrically connected to a second portion of the at least one piezoelectric strip, and a dampening member disposed on the at least one piezoelectric strip.
Abstract:
An actuator for an electronic door lock includes a stationary first magnet assembly, a beam, and a second magnet assembly. The first magnet includes at least one magnet stationarily positioned within the electronic door lock. The beam is movable relative to the first magnet assembly to a first position and a second position. The second magnet assembly is connected to the beam and is configured to be magnetically repulsed away from the first magnet assembly. The repulsion of the second magnet assembly maintains the beam in either the first or second position until the beam is selectively actuated therefrom.
Abstract:
A self-lubricated actuator for a rotor blade flap of a helicopter having a housing; a motor having a shaft disposed in a bearing is provided. The actuator further has an output rod and a mechanism operatively associated with the motor and the output rod to transmit movement from the motor to the output rod. The housing includes a lubrication medium capable of substantially immersing the bearing, the motor shaft and the mechanism during operation.
Abstract:
A device for controlling the pitch of a helicopter's rotor blade, the device having a BLDC motor based actuator; and at least one control surface operatively connected to the BLDC motor based actuator. The actuator and the control surface are preferably fully integrated into the interior profile of the rotor blade and are capable of controlling the PFC of the helicopter and improving HHC during operation by reducing noise and vibration. The motor is preferably a high power density motor incorporating rare earth permanent magnets connected to a roller/ball screw or planetary gear set to provide the right combination of force/torque, stroke and frequency.
Abstract:
A vibration suppressor system includes a control system operable to control power from a power system to an actuator system in response to a minimal actuation power algorithm. The minimal actuation power algorithm employs a real electric power consumption of the actuator system as a single control objective function to suppress a vibration of the structure.
Abstract:
A vibration suppressor system includes a control system operable to control power from a power system to an actuator system in response to a minimal actuation power algorithm. The minimal actuation power algorithm employs a real electric power consumption of the actuator system as a single control objective function to suppress a vibration of the structure.
Abstract:
A helicopter rotor blade that has a blade body and a control flap secured to the blade body. The rotor blade has a first primary mover capable of generating a first linear motion that is sufficient to generate a high amplitude, low frequency motion of the control flap; and a second primary mover capable of generating a second linear motion that is sufficient to generate a small amplitude, high frequency motion of the control flap. Further, the rotor blade has a coupling transmission for combining the first linear motion with the second linear motion that generates a cumulative linear motion; and a second transmission device that causes the cumulative linear motion to rotate the control flap.
Abstract:
A helicopter rotor blade that has a blade body and a control flap secured to the blade body. The rotor blade has a first primary mover capable of generating a first linear motion that is sufficient to generate a high amplitude, low frequency motion of the control flap; and a second primary mover capable of generating a second linear motion that is sufficient to generate a small amplitude, high frequency motion of the control flap. Further, the rotor blade has a coupling transmission for combining the first linear motion with the second linear motion that generates a cumulative linear motion; and a second transmission device that causes the cumulative linear motion to rotate the control flap.
Abstract:
A helicopter rotor blade having a blade body that defines a confined space and a control flap that is secured to the blade body that moves through a range of motion. An electric machine is secured inside of the rotor blade body that rotates a motor shaft. A transmission device is secured to the motor shaft and the control flap that transfers rotary motion of the motor shaft to the control flap to generate movement of the control flap through its range of motion. The transmission device remains substantially within the confined space throughout the range of motion.