摘要:
A process for plasma spot welding of surface-treated workpieces using a plasma torch comprises supplying a plasma-generating gas to the plasma torch, connecting a first terminal (−) of a current source to an electrode of the plasma torch, connecting a second terminal (+) of the current source to a workpiece, building up at least one plasma arc from the electrode of the torch toward the workpiece by applying electric current (I(t)) from the current source to an anode-cathode path between the electrode and the workpiece. The electric current (I(t)) is kept in a preprocessing current range (IV) in a phase I and, in a subsequent phase II, at a main processing current value (IH) having an the average value of which is higher than the average preprocessing current range (IV). Phase I is maintained at least until the at least partial evaporation of surface treatment layers of the workpieces in a joining zone.
摘要:
Provided is a fluid-cooled melting tool that can be used in methods and systems for manufacturing objects by additive manufacturing techniques, especially titanium and titanium alloy objects. In some configurations, the melting tool is configured to be a plasma transferred arc (PTA) torch and the deposition rate can be increased by increasing the flow rate of electric charge through the electrode made possible by the dual circuit cooling design of the torch. The fluid-cooled melting tools provided herein exhibit stable and repeatable PTA characteristics over wide range of current including current of 400 amps or more, whether pulsed or non-pulsed, and plasma gas flow inputs.
摘要:
Provided is a fluid-cooled melting tool that can be used in methods and systems for manufacturing objects by additive manufacturing techniques, especially titanium and titanium alloy objects. In some configurations, the melting tool is configured to be a plasma transferred arc (PTA) torch and the deposition rate can be increased by increasing the flow rate of electric charge through the electrode made possible by the dual circuit cooling design of the torch. The fluid-cooled melting tools provided herein exhibit stable and repeatable PTA characteristics over wide range of current including current of 400 amps or more, whether pulsed or non-pulsed, and plasma gas flow inputs.
摘要:
This invention relates to a method and arrangement for manufacturing objects by solid freeform fabrication, especially titanium and titanium alloy objects, wherein the deposition rate is increased by supplying the metallic feed material in the form of a wire and employing two gas transferred arcs, one plasma transferred arc for heating the deposition area on the base material and one plasma transferred arc for heating and melting the feed wire.
摘要:
A method and arrangement for manufacturing objects by solid freeform fabrication, especially titanium and titanium alloy objects, wherein the deposition rate is increased by supplying the metallic feed material in the form of a wire and employing two gas transferred arcs, one plasma transferred arc for heating the deposition area on the base material and one plasma transferred arc for heating and melting the feed wire.
摘要:
The invention relates to a welding apparatus (1), particularly a resistance welding apparatus, comprising a control device (2), a charging device (10), at least one energy store (22 to 24), a switching device (33 to 35) and a consumer (51), the energy store (22 to 24) being incorporated in parallel with the charging device (10) and the said energy store being connected, via the switching device (33 to 35) associated therewith and a transfer device (31) subsequent thereto, to the consumer (51), particularly a welding torch (52) with a non-melting electrode (53) and a workpiece (54). A plurality of energy stores (22 to 24) are disposed each with an associated switching device (33 to 35), and the switching devices (33 to 35) of the energy stores (22 to 24) are triggered between two charging cycles by the control device (2) for directly successive emission of at least a portion of the energy stored in one of the energy stores (22 to 24) to the consumer (51).