摘要:
A process gas introduction and channeling system for use with apparatus adapted to produce photovoltaic devices by depositing semiconductor layers onto continuously moving substrate material. The deposition apparatus preferably includes at least one deposition chamber having (1) a region in which process gases are decomposed and (2) a manifold from which process gases are introduced to flow through the downstream decomposition region. In the preferred embodiment, as the process gases flow through the decomposition region, they are disassociated and recombined under the influence of an electromagnetic field. The species and combinations of process gases thus formed are deposited onto the substrate material. The process gas introduction and channeling system described herein, is adapted to direct the process gases introduced into each of the at least one deposition chamber to pass through the decomposition region thereof in a direction substantially parallel to the direction of travel of the substrate material, whereby substantially uniform semiconductor layers are deposited atop the entire surface of the substrate material.
摘要:
In continuous apparatus for the glow discharge deposition of amorphous silicon alloy solar cells of p-i-n-type configuration in a plurality of interconnected, dedicated deposition chambers, a plasma bar operatively disposed between at least the plasma regions in which the layer pairs of amorphous silicon alloy material defining the major semiconductor junction of the solar cell are deposited. The plasma bar is adapted to initiate a plasma so as to prevent chemically adsorbed contaminants from deleteriously affecting the surface of the first deposited of the layer pair, thereby improving the open circuit voltage of the solar cell. In a similar manner, the plasma bar may also be provided between the layer pairs of amorphous silicon alloy material which combine to define the minor semiconductor junction of the solar cell. Finally, a plasma bar may be disposed between the oxide-based layer of a back reflector for reducing oxygen contamination of the silicon alloy material deposited thereupon.
摘要:
An improved gas gate (34) is adapted to operatively interconnect to adjacent chambers in which process gases are introduced for depositing a first layer (16) upon a substrate (11) in a first chamber (28) and different process gases are introduced for depositing a second layer (18) in the second chamber (30) in continuous low pressure glow dicharge deposition process. A plurality of electrodes (60) and grounded shields (62) are positioned in the isolation passageway (92) of gas gate (34). The electrodes (60) have a potential sufficient to create a plasma from any gas molecule escaping from one of the deposition chambers. After the plasma is formed it is attracted to and captured or plated on the shield (62) preventing the gas plasma from landing on the substrate material (11) or passing through the gas gate. The present invention reduces the back diffusion of gases through the gas gate by actively eliminating free gas molecules by ionizing them to form a plasma and capturing the plasma ions in a permanent fashion.