Abstract:
In a method for reading out information stored in a phosphor layer whereby the phosphor layer is stimulated into emitting emission light by stimulation light produced from a light source, the emission light emitted from one or several areas of the phosphor layer is collected by a detector moved relative to the phosphor layer, and then converted into corresponding emission light signals. In order to improve the signal/noise ratio, the light source is momentarily switched off at least once during the movement of the detector relative to the phosphor layer. When the light source is switched off, a background, which is caused by the ambient light and/or dark currents in the detector, is collected by the detector and converted into a corresponding background signal. The background signal is then used for correcting the emission light signals.
Abstract:
An apparatus (1) for erasing a storage phosphor layer (2) includes a radiation source (8) for producing and emitting erasing radiation, a drive (5) for producing a relative movement between the storage phosphor layer (2) and the radiation source (8), the storage phosphor layer (2) lying or being moved in a holding plane (7), and a reflector (11) for reflecting radiation. The reflector (11) is arranged and designed to reflect erasing radiation reflected by the storage phosphor layer (2) in the direction of the storage phosphor layer (2). A further reflecting surface (31) is provided for reflecting erasing radiation which is positioned opposite the reflector (11), as considered in a direction at right angles to the direction (6) of the relative movement.
Abstract:
A device for acquiring information contained in a phosphor layer comprises a light source (2) for irradiating the phosphor layer (1) with excitation light (3) that is suitable for exciting emission light (4) in the phosphor layer (1), a detector (6) for detecting the emission light (4) that has been excited in the phosphor layer (1), and a filter device (8), arranged between the phosphor layer (1) and the detector (6), that is substantially transparent in a first wavelength range (W1) of the emission light (4) and substantially non-transparent in a second wavelength range (W2) of the excitation light (3). To increase the reliability during the acquisition of the emission light, the filter device (8) is made substantially non-transparent in at least a third wavelength range (W3) having longer wavelengths than the second wavelength range (W2) of the excitation light (3).
Abstract:
The present invention relates to an apparatus and to a corresponding method for reading out X-ray information stored in a storage phosphor layer (1) comprising a light source (2) for generating a stimulation light beam (3) which can stimulate the storage phosphor layer (1) to emit emission light, and a deflection element (4) for deflecting the stimulation light beam (3) in such a way that the deflected stimulation light beam (3′) is moved over the storage phosphor layer (1). In order to achieve the highest possible quality of the X-ray image obtained in the simplest and most cost-effective way possible, a drive device (5) is provided for driving the deflection element (4) by delivering drive energy to the deflection element (4) dependently upon a location of the deflected stimulation light beam (3′) and/or dependently upon a position, in particular an angular position, of the deflection element (4).
Abstract:
An apparatus (1) for erasing a storage phosphor layer (2) includes a drive (5) for producing a relative movement between the storage phosphor layer (2) and the radiation source (8), the storage phosphor layer (2) lying or being moved in a holding plane (7), and a reflector (11) for reflecting radiation. The reflector (11) is arranged and designed to reflect erasing radiation reflected by the storage phosphor layer (2) in the direction of the storage phosphor layer (2). A width (14) of the reflector (11) in the direction (6) of the relative movement is at least ten times as great as a smallest distance (15) between the reflector (11) and the holding plane (7).
Abstract:
The invention relates to an imaging device for imaging a long object. The imaging device includes at least one vertical lens device which concentrates light from the long object in a vertical direction, and a plurality of lens elements which are arranged in the form of a matrix in at least one lens line behind the vertical lens device, the lens elements respectively concentrating light from the long object in a horizontal direction. In order to achieve optimum light intensity in a cost-effective manner, each lens element comprises at least one horizontal collecting layer which is transparent to the light from the long object and comprises a refractive index having a gradient in the horizontal direction.
Abstract:
An apparatus (1) for erasing a storage phosphor layer (2) with a holding plane (7) in which the storage phosphor layer (2) lies or can be moved, a radiation source (8, 9, 10) for irradiating the storage phosphor layer (2) with erasing radiation which is suitable for erasing the storage phosphor layer (2), and a reflector (11; 29, 30) for reflecting erasing radiation in the direction of the holding plane (7). In order to increase the erasing efficiency, provision is made such that the reflector (11; 29, 30) is arranged and/or designed such that it reflects erasing radiation, which is reflected by the storage phosphor layer (2), in the direction of the storage phosphor layer (2), and the radiation source (8, 9, 10) is disposed on a base (33; 48, 49), the base (33; 48, 49) being disposed closer to the holding plane (7) than at least part of the reflector (11; 29, 30).
Abstract:
An apparatus (1) for erasing a storage phosphor layer (2) includes a drive (5) for producing a relative movement between the storage phosphor layer (2) and the radiation source (8), the storage phosphor layer (2) lying or being moved in a holding plane (7), and a reflector (11) for reflecting radiation. The reflector (11) is arranged and designed to reflect erasing radiation reflected by the storage phosphor layer (2) in the direction of the storage phosphor layer (2). A width (14) of the reflector (11) in the direction (6) of the relative movement is at least ten times as great as a smallest distance (15) between the reflector (11) and the holding plane (7).
Abstract:
An apparatus (1) for erasing a storage phosphor layer (2) includes a radiation source (8) for producing and emitting erasing radiation, a drive (5) for producing a relative movement between the storage phosphor layer (2) and the radiation source (8), the storage phosphor layer (2) lying or being moved in a holding plane (7), and a reflector (11) for reflecting radiation. The reflector (11) is arranged and designed to reflect erasing radiation reflected by the storage phosphor layer (2) in the direction of the storage phosphor layer (2). A further reflecting surface (31) is provided for reflecting erasing radiation which is positioned opposite the reflector (11), as considered in a direction at right angles to the direction (6) of the relative movement.
Abstract:
A device for acquiring information that is contained in a phosphor layer which includes a light source (2) for irradiating and exciting the phosphor layer (1) to produce emission light (4) containing the information, a detector (6) for acquiring the emission light (4) produced in the phosphor layer (1) and a filter device (8), which is arranged between the phosphor layer (1) and the detector (6) and/or between the phosphor layer (1) and the light source (2). To increase the reliability in the acquisition of the emission light (4), the filter device (8) includes at least two filter elements structured as absorption filters and joined to each other.