Abstract:
A mobile wireless communications device includes a housing an antenna, and radio frequency (RF) circuitry. A transceiver is connected to the antenna and a processor is operative with the RF circuitry. The transceiver includes an In-phase and Quadrature (I/Q) Modulation and Power Amplification circuit having an In-phase (I) circuit with a modulator mixer and power amplifier circuit. A Quadrature (Q) circuit includes a modulator mixer and power amplifier circuit. A power combiner receives the separately amplified In-phase and Quadrature signals and sums and outputs the signals as a combined I and Q signal. The I and Q circuits are isolated from the combined I and Q signal to enhance antenna matching and transmitted radiated power (TRP) and reduce harmonic emission from the power amplification circuits.
Abstract:
A mobile wireless communications device includes a housing and circuit board carried by the housing. RF circuitry and a processor are operative with each other and carried by the circuit board. A receiver speaker and microphone are carried by the housing. Audio circuitry is carried by the circuit board and operative with the RF circuitry and processor. A microphone audio switch and receiver speaker audio switch are carried by the circuit board and are connected with audio connection lines that interconnect the processor. A filter is operative with the audio connection lines and operatively connected to at least one of the microphone audio switch or receiver speaker audio switch to reduce conducted and radiated interfering RF energy from coupling into the audio circuitry.
Abstract:
The disclosure provides a microphone coupler system for a microphone mounted on a printed circuit board (PCB) for a communication device. The system comprises a boot assembly to enclose the microphone and to direct acoustic signals to the microphone within the communication device, the boot assembly having a coupling section shaped to hold the microphone with the aperture facing upward from the PCB and an elongated section extending from the coupling section. In the system, an acoustic channel for the microphone is formed in part by the boot assembly when the boot assembly is mounted over the microphone. The system may further comprise a platform having an aperture, the platform for mounting on the PCB over the microphone.
Abstract:
The disclosure relates to an electronic circuit for attenuating harmonics in a power amplifier. The circuit comprises: a printed circuit board (PCB); a first electrical track in the PCB providing a connection from a high band power input terminal of the amplifier to a battery terminal; a first capacitor connected to the first track, the high band power input terminal and a ground reference in the PCB; a first high filter choke connected to the first track and to the terminal; a second electrical track connected to a low band power input terminal of the amplifier; a circuit implemented on the PCB and connected to an output terminal of the amplifier for an output signal from the amplifier, comprising a first filter and a low pass filter, the first filter connected to a 0 ohm resistor which is connected to the low pass filter.
Abstract:
A mobile wireless communications device includes a housing and circuit board carried by the housing and having radio frequency (RF) circuitry and a processor operative with each other. Audio circuitry is carried by the circuit board and an audio transducer assembly, such as a speaker, has electrical contacts that electrically engage the audio circuitry for carrying audio signals between the audio circuitry and audio transducer assembly. A filter is mounted at the audio transducer assembly and reduces radio frequency (RF) electromagnetic interference to the audio transducer assembly during device operation.
Abstract:
A mobile wireless communications device includes a housing and antenna supported by the housing. At least one circuit board is carried by the housing and has radio frequency (RF) circuitry operative with the antenna for receiving and transmitting RF signals through the antenna. A power amplifier is connected within a transmission line for amplifying RF signals to be transmitted over the transmission line to the antenna. An antenna switch is carried by the circuit board and connected to the antenna and RF circuitry. An RF shield surrounds the power amplifier and antenna switch isolates the power amplifier and antenna switch from the antenna and RF circuitry. A low pass filter has an input connected to the power amplifier and an output connected to the antenna switch for reducing any RF coupling of voltage standing waves of upper harmonic frequencies from the power amplifier into the antenna switch between the input and output of the low pass filter through the RF shield while maintaining transmission of signals through the transmission line at a desired fundamental frequency.
Abstract:
A wireless headset has improved immunity to RF electromagnetic interference produced from wireless communications devices. A headset body is adapted to be worn by a user and includes a microphone and earpiece. An antenna receives wireless communication signals and passes them to RF and audio circuitry mounted within the headset body. The RF and audio circuitry include a Bluetooth module operatively connected to the antenna for transmitting and receiving wireless communication signals, an audio CODEC connected to the Bluetooth module, and audio connection lines connected between the CODEC and the earpiece and between the CODEC and the microphone. A filter is connected into each of the audio connection lines at the earpiece and microphone and operative for reducing the RF coupling from a mobile wireless communications device.
Abstract:
A mobile wireless communications device includes a housing and circuit board in the housing and having radio frequency (RF) circuitry and a power amplifier and microphone mounted thereon. An antenna is carried within the housing and operative with the RF circuitry. An RF shield surrounds and isolates the microphone from the RF circuitry, power amplifier and antenna and shields the microphone from radiated energy generated from the RF circuitry, antenna or power amplifier.
Abstract:
The invention relates to a system and method for attenuating harmonics in output signals. In the system, an electronic circuit for reducing harmonics of an output signal from a power amplifier in a transmission circuit for a wireless communication device is provided. The circuit comprises: a printed circuit board (PCB); a power amplifier for generating an output signal; and a circuit implemented on the PCB connected to an output terminal of the power amplifier for the output signal. The circuit comprises a first filtering stage; a delay element; and a harmonic filter. The delay element is located between the harmonic filter and the output terminal and the delay element provides a timing delay in the output signal through at least one 0 ohm-rated component. Also, the harmonic filter is a low pass filter having a frequency cut-off point that attenuates first order harmonics of the output signal.
Abstract:
A mobile wireless communications device includes a housing and antenna supported by the housing. At least one circuit board is carried by the housing and has radio frequency (RF) circuitry operative with the antenna for receiving and transmitting RF signals through the antenna. A power amplifier is connected within a transmission line for amplifying RF signals to be transmitted over the transmission line to the antenna. An antenna switch is carried by the circuit board and connected to the antenna and RF circuitry. An RF shield surrounds the power amplifier and antenna switch isolates the power amplifier and antenna switch from the antenna and RF circuitry. A low pass filter has an input connected to the power amplifier and an output connected to the antenna switch for reducing any RF coupling of voltage standing waves of upper harmonic frequencies from the power amplifier into the antenna switch between the input and output of the low pass filter through the RF shield while maintaining transmission of signals through the transmission line at a desired fundamental frequency.