Abstract:
A piston rod (2) of a piston-cylinder unit (3) carries at the top a pressing plunger (not shown) of a glass forming machine and is guided in a guide sleeve (22). The guide sleeve (22) is seated in a magnetically conductive support sleeve (20) of a retaining flange (14). The support sleeve (20) carries an external coil (27) whose connecting wires (30) are guided outwardly to a plug socket (37). On the top of the piston (6) is fixed an internal flange (39) of a circular annular metallic actuating member (40). At the uppermost end of the pressing stroke of the piston (6) the actuating member (40) enters into an annular chamber (29) around the coil (27) and thereby changes the inductance of the coil.
Abstract:
A displacement pick-up arrangement for the position detection of a plunger is a component of a pressing station of a section of an I.S. glass-forming machine in which a plunger is inserted into a mold recess of a parison mold holding a glass gob at this time, and includes a ring-shaped core which is carried by a piston rod mounted to said plunger. The core forms an actuating element for changing the inductivity of a coil which is arranged in a ring-shaped frame between a cylinder and a guiding cylinder for the plunger.
Abstract:
Glass containers are taken to a high temperature in an annealing furnace and removed from the annealing furnace belt by grips of a gripping device. The gripping device is then moved by a handling device first vertically upwards, then horizontally above a fluidized bed and then downwards into the fluidized bed in order to coat the glass containers with a powder, it is then taken upwards out of the fluidized bed and finally moved horizontally over a conveyor belt. There, the glass containers are released from the gripping device and set down on the conveyor belt which takes the powder-coated glass containers through a second curing region in which the powder coating is cured to form a substantially duroplastic layer.
Abstract:
Glass containers (3) are taken to a high temperature in an annealing furnace (7) and removed from the annealing furnace belt (5) by grips (16) of a gripping device (12). The gripping device (12) is then moved by a handling device (13) first vertically upwards, then horizontally above a fluidized bed (18) and then downwards into the fluidized bed in order to coat the glass containers (3) with a powder; it is then taken upwards out of the fluidized bed (18) and finally moved horizontally over a conveyor belt (22). There, the glass containers (3) are released from the gripping device (12) and set down on the conveyor belt (22) which takes the powder-coated glass containers (3) through a second curing region (27) in which the powder is cured to form a substantially duroplastic layer.
Abstract:
An arrangement for adjusting the mass of gobs of thermoplastic material, especially molten glass, which are deformed in a positive manner in the mold of a molding machine by means of a pressing member which penetrates into the gobs. A distance transducer mechanically detects the maximum depth of penetration reached by the pressing member during each molding-machine operating cycle. The distance transducer is connected with a metallic actuating element for a differential transducer, at whose output is produced an electrical signal proportional to the maximum penetration depth reached, this signal being applied to an automatic regulating circuit which adjusts the setting of a dosing structure which controls the mass of the gobs. The regulating circuit includes, at the output of the differential transformer and connected one after the next, a measurement transducer, a maximum-value storage, a sample-and-hold circuit, a summing junction, a PI- or PID-regulator and an adjusting motor which drives an adjusting member for the dosing structure, as well as a feedback transducer. The feedback transducer is connected to the PI- or PID-regulator via a rotary-angle-to-voltage converter. A control and display panel is connected to a control logic circuit, the latter connected to the maximum-value storage and to the sample-and-hold circuit, the control logic circuit receiving a machine synchronization signal once per machine operating cycle. A desired-value potentiometer furnishes a desired-value voltage representing the optimum penetration depth for the pressing member, this voltage being applied to the summing junction. A weighting circuit can be provided to take into account the different maximum diameters of different pressing members which may from time to time be used. The feedback transducer is automatically returned to a middle angular setting thereof. The distance transducer can be constructed in several different ways, disclosed.
Abstract:
The apparatus includes a photoelectric sensor associated with a predetermined zone of a hollow glass article to be examined for faults. During one testing operation, the photoelectric sensor successively detects all faults in that zone and generates for each a fault signal whose value is dependent upon the characteristics of the fault. The fault signals are applied to a threshold circuit which generates an output signal only when the fault-signal value exceeds a threshold-signal level. The setting-up procedure involves performing at least one preliminary testing operation upon a preselected sample or standard article having acceptable faults. Each threshold-circuit output signal automatically results in a circuit adjustment which reduces by a predetermined amount the extent to which the respective fault-signal value exceeds the threshold-signal level. The preliminary testing operation is performed repeatedly, until the largest-value fault signal generated during one testing operation has a value slightly below the threshold-signal level, whereupon the testing apparatus has been properly set-up automatically. Thereafter, testing operations are performed upon articles whose eventual faults or flaws are not yet known to be acceptable.
Abstract:
In an apparatus (1) for the severing of gobs from one or more strands (2;3) of molten glass, the severing of each gob is effected by a shear blade pair (5;6). A shear blade (7,8;9,10) of each shear blade pair is arranged on an associated, pivotably mounted shear arm (11;12). The two shear arms (11;12) are coaxially and freely pivotably mounted relative to each other on a common column (13). Each shear arm is pivotably drivable synchronously in relation to the other by its own separate drive means (24;25).
Abstract:
The apparatus comprises at least one plunger (2) and a plunger holder (3) which can be raised and lowered. An arm (18) of a tilt lever (17) is coupled to the plunger holder (3). A link member (22) of a drive system (23) cooperates with the other arm (20) of the tilt lever. The link member (22) is adjustable along said other arm (20) in order to change the stroke of the plunger. The drive system (23) comprises an electric servodrive with a take-off shaft (13), the drive being connected to the link member (22) and being controllable by electronic control means. The link member (22) is arranged on a tie rod (26) which at one free end is coupled (28) to a pivot lever (27) which is mounted fixedly in relation to the apparatus. At a central coupling point (30) of the pivot lever (27) is coupled a push rod (32) whose other end is coupled to a crank (14) of the take-off shaft (13).
Abstract:
A device for an intermittent application of a lubrication or a separation liquid to a component part of a glass-forming machine engageable with molten glass, includes an intermittently driven high-pressure pump and a spraying nozzle connected to the pump by a pressure conduit to apply momentarily a cone of atomized lubrication or separation liquid on the machine part at a pressure of at least 100 bars.