摘要:
Combination therapies comprising antibody molecules that specifically bind to PD-1 disclosed. The combination therapies can be used to treat or prevent cancerous or infectious conditions and disorders.
摘要:
Provided are modified matrix metalloprotease (MMP) enzymes that exhibit temperature-dependent activity and uses thereof. The MMPs can be used, for example, to treat ECM-mediated diseases or disorders characterized by increased deposition or accumulation of one or more ECM components.
摘要:
This invention provides methods of obtaining novel polynucleotides and encoded polypeptides by the use of non-stochastic methods of directed evolution (DirectEvolution™). A particular advantage of exonuclease-mediated reassembly methods is the ability to reassemble nucleic acid strands that would otherwise be problematic to chimerize. Exonuclease-mediated reassembly methods can be used in combination with other mutagenesis methods provided herein. These methods include non-stochastic polynucleotide site-saturation mutagenesis (Gene Site Saturation Mutagenesis™) and non-stochastic polynucleotide reassembly (GeneReassembly™). This invention provides methods of obtaining novel enzymes that have optimized physical &/or biological properties. Through use of the claimed methods, genetic vaccines, enzymes, small molecules, and other desirable molecules can be evolved towards desirable properties. For example, vaccine vectors can be obtained that exhibit increased efficacy for use as genetic vaccines. Vectors obtained by using the methods can have, for example, enhanced antigen expression, increased uptake into a cell, increased stability in a cell, ability to tailor an immune response, and the like. Furthermore, this invention provides methods of obtaining a variety of novel biologically active molecules, in the fields of antibiotics, pharmacotherapeutics, and transgenic traits.
摘要:
This invention provides methods of obtaining novel polynucleotides and encoded polypeptides by the use of non-stochastic methods of directed evolution (DirectEvolution™). A particular advantage of end-selection-based methods is the ability to recover full-length polynucleotides from a library of progeny molecules generated by mutagenesis methods. These methods include non-stochastic polynucleotide site-saturation mutagenesis (Gene Site Saturation Mutagenesis™) and non-stochastic polynucleotide reassembly (GeneReassembly™). This invention provides methods of obtaining novel enzymes that have optimized physical &/or biological properties. Through use of the claimed methods, genetic vaccines, enzymes, small molecules, and other desirable molecules can be evolved towards desirable properties. For example, vaccine vectors can be obtained that exhibit increased efficacy for use as genetic vaccines. Vectors obtained by using the methods can have, for example, enhanced antigen expression, increased uptake into a cell, increased stability in a cell, ability to tailor an immune response, and the like. Furthermore, this invention provides methods of obtaining a variety of novel biologically active molecules, in the fields of antibiotics, pharmacotherapeutics, and transgenic traits.
摘要:
This invention provides methods of obtaining novel polynucleotides and encoded polypeptides by the use of non-stochastic methods of directed evolution (DirectEvolution™). A particular advantage of exonuclease-mediated reassembly methods is the ability to reassemble nucleic acid strands that would otherwise be problematic to chimerize. Exonuclease-mediated reassembly methods can be used in combination with other mutagenesis methods provided herein. These methods include non-stochastic polynucleotide site-saturation mutagenesis (Gene Site Saturation Mutagenesis™) and non-stochastic polynucleotide reassembly (GeneReassembly™). This invention provides methods of obtaining novel enzymes that have optimized physical &/or biological properties. Through use of the claimed methods, genetic vaccines, enzymes, small molecules, and other desirable molecules can be evolved towards desirable properties. For example, vaccine vectors can be obtained that exhibit increased efficacy for use as genetic vaccines. Vectors obtained by using the methods can have, for example, enhanced antigen expression, increased uptake into a cell, increased stability in a cell, ability to tailor an immune response, and the like. Furthermore, this invention provides methods of obtaining a variety of novel biologically active molecules, in the fields of antibiotics, pharmacotherapeutics, and transgenic traits.
摘要:
A directed evolution process comprising novel methods for generating improved progeny molecules having desirable properties, including, for example, a method for rapid and facilitated production from a parental polynucleotide template, of a set of mutagenized progeny polynucleotides wherein at least one codon encoding each of the 20 naturally encoded amino acids is represented at each original codon position. This method, termed site-saturation mutagenesis, or simply saturation mutagenesis, is preferably based on the use of the degenerate N,N,G/T sequence. Also, a method of producing from a parental polypeptide template, a set of mutagenized progeny polypeptides wherein each of the 20 naturally encoded amino acids is represented at each original amino acid position. Also, other mutagenization processes that can be used in combination with, or in lieu of, saturation mutagenesis, including, for example: (a) assembly and/or reassembly of polynucloetide building blocks, which building blocks can be sections of genes &/or of gene families; and (b) introduction of two or more related polynucleotides into a suitable host cell such that a hybrid polynucleotide is generated by recombination and reductive reassortment. Also, vector and expression vehicles including such polynucleotides and correspondingly expressed polypeptides. Also molecular property screening methods, including a preferred method, termed end selection, comprised of using an enzyme, such as a topoisomerase, a restriction endonuclease, &/or a nicking enzyme (such as N. BstNB I), to detect a specific terminal sequence in a working polynucleotide, to produce a ligatable end thereat, and to ligate and clone the working polynucleotide.
摘要:
This invention provides methods of obtaining novel polynucleotides and encoded polypeptides by the use of non-stochastic methods of directed evolution (DirectEvolution™). A particular advantage of end-selection-based methods is the ability to recover full-length polynucleotides from a library of progeny molecules generated by mutagenesis methods. These methods include non-stochastic polynucleotide site-saturation mutagenesis (Gene Site Saturation Mutagenesis™) and non-stochastic polynucleotide reassembly (GeneReassembly™). This invention provides methods of obtaining novel enzymes that have optimized physical &/or biological properties. Through use of the claimed methods, genetic vaccines, enzymes, small molecules, and other desirable molecules can be evolved towards desirable properties. For example, vaccine vectors can be obtained that exhibit increased efficacy for use as genetic vaccines. Vectors obtained by using the methods can have, for example, enhanced antigen expression, increased uptake into a cell, increased stability in a cell, ability to tailor an immune response, and the like. Furthermore, this invention provides methods of obtaining a variety of novel biologically active molecules, in the fields of antibiotics, pharmacotherapeutics, and transgenic traits.
摘要:
This invention provides methods of obtaining novel polynucleotides and encoded polypeptides by the use of non-stochastic methods of directed evolution (DirectEvolution™). A particular advantage of end-selection-based methods is the ability to recover full-length polynucleotides from a library of progeny molecules generated by mutagenesis methods. These methods include non-stochastic polynucleotide site-saturation mutagenesis (Gene Site Saturation Mutagenesis™) and non-stochastic polynucleotide reassembly (GeneReassembly™). This invention provides methods of obtaining novel enzymes that have optimized physical &/or biological properties. Through use of the claimed methods, genetic vaccines, enzymes, small molecules, and other desirable molecules can be evolved towards desirable properties. For example, vaccine vectors, can be obtained that exhibit increased efficacy for use as genetic vaccines. Vectors obtained by using the methods can have, for example, enhanced antigen expression, increased uptake into a cell, increased stability in a cell, ability to tailor an immune response, and the like. Furthermore, this invention provides methods of obtaining a variety of novel biologically active molecules, in the fields of antibiotics, pharmacotherapeutics, and transgenic traits.
摘要:
Provided are compositions for use in methods for treating diseases associated with expression of mesothelin comprising administering a cell that expresses a chimeric antigen receptor (CAR) specific to mesothelin in combination with a PD-L1 inhibitor.
摘要:
A directed evolution process comprising novel methods for generating improved progeny molecules having desirable properties, including, for example, a method for rapid and facilitated production from a parental polynucleotide template, of a set of mutagenized progeny polynucleotides wherein at least one codon encoding each of the 20 naturally encoded amino acids is represented at each original codon position. This method, termed site-saturation mutagenesis, or simply saturation mutagenesis, is preferably based on the use of the degenerate N,N,G/T sequence. Also, a method of producing from a parental polypeptide template, a set of mutagenized progeny polypeptides wherein each of the 20 naturally encoded amino acids is represented at each original amino acid position. Also, other mutagenization processes that can be used in combination with, or in lieu of, saturation mutagenesis, including, for example: (a) assembly and/or reassembly of polynucloetide building blocks, which building blocks can be sections of genes &/or of gene families; and (b) introduction of two or more related polynucleotides into a suitable host cell such that a hybrid polynucleotide is generated by recombination and reductive reassortment. Also, vector and expression vehicles including such polynucleotides and correspondingly expressed polypeptides. Also molecular property screening methods, including a preferred method, termed end selection, comprised of using an enzyme, such as a topoisomerase, a restriction endonuclease, &/or a nicking enzyme (such as N. BstNB I), to detect a specific terminal sequence in a working polynucleotide, to produce a ligatable end thereat, and to ligate and clone the working polynucleotide.