摘要:
Methods and compositions are provided for a broad-spectrum, bactericidal or bacteriostatic treatment of antibiotic-resistant bacteria in animals with a non-toxic agent. The teachings include bactericidal or bacteriostatic treatment of spore-forming, anaerobic antibiotic-resistant bacteria. And, the compositions and methods provided herein can at least inhibit the onset of, inhibit the growth of, inhibit the germination of, or kill the antibiotic-resistant bacteria. Such antibiotic-resistant bacteria include, but are not limited to, Clostridium difficile, Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae.
摘要:
Methods of and compositions for producing and using plant-based materials are provided. The methods include using biopolymers or their synthetic equivalents combined with a stable source of reactive oxygen species that when applied to or combined with a separate source of oxido-reducing enzyme or catalyst will cause the formation of an activated biopolymer with increased protein binding affinity and microbial control activities.
摘要:
The teachings provided herein generally relate to site-activated binding systems that selectively increase the bioactivity of phenolic compounds at target sites. More particularly, the systems taught here include a phenolic compound bound to a reactive oxygen species, wherein the phenolic compound and the reactive oxygen species react at a target area in the presence of an oxidoreductase enzyme.
摘要:
The teachings provided herein generally relate to site-activated binding systems that selectively increase the bioactivity of phenolic compounds at target sites. More particularly, the systems taught here include a phenolic compound bound to a reactive oxygen species, wherein the phenolic compound and the reactive oxygen species react at a target area in the presence of an oxidoreductase enzyme.
摘要:
The teachings provided herein generally relate to site-activated binding systems that selectively increase the bioactivity of phenolic compounds at target sites. More particularly, the systems taught here include a phenolic compound bound to a reactive oxygen species, wherein the phenolic compound and the reactive oxygen species react at a target area in the presence of an oxidoreductase enzyme.
摘要:
The teachings provided herein generally relate to site-activated binding systems that selectively increase the bioactivity of phenolic compounds at target sites. More particularly, the systems taught here include a phenolic compound bound to a reactive oxygen species, wherein the phenolic compound and the reactive oxygen species react at a target area in the presence of an oxidoreductase enzyme.
摘要:
The teachings provided herein generally relate to site-activated binding systems that selectively increase the bioactivity of phenolic compounds at target sites. More particularly, the systems taught here include a phenolic compound bound to a reactive oxygen species, wherein the phenolic compound and the reactive oxygen species react at a target area in the presence of an oxidoreductase enzyme.
摘要:
Methods of and compositions for producing and using plant-based materials are provided. The methods include using biopolymers or their synthetic equivalents combined with a stable source of reactive oxygen species that when applied to or combined with a separate source of oxido-reducing enzyme or catalyst will cause the formation of an activated biopolymer with increased protein binding affinity and microbial control activities.
摘要:
The present invention is directed to a method and a composition for producing and using a plant-based biocidal solution. The plant-based biocidal solution contains a bioactive material and a plant-based substance formed from the cellular material of a plant. The plant-based substance is capable of binding to the bioactive material. In some embodiments, the bioactive material is hydrogen peroxide. The hydrogen peroxide can be added exogenously or generated endogenously. In accordance with further embodiments, the plant-based biocidal solution can be applied to a target, thereby impairing the target. In some embodiments, the target can be a pathogen. In accordance with another embodiment, the plant-based substance of the plant-based biocidal solution can form a microscopic cluster, a complex, or an aggregate for providing sufficient bioactive material to overcome the defense mechanism of the target.