Abstract:
Resolving conflicting graph mutations in a distributed computing system. Graph data for at least a partition of a graph is stored in a worker system of a distributed computing system. The graph represents relationships among a set of tangible items that model a real-world condition having an associated problem. A plurality of conflicting mutation requests are received to mutate the graph. A conflict between the mutation requests is resolved with a conflict resolution function that lacks direct access to the graph data. The graph data is updated responsive to a result generated by resolving the conflict using the conflict resolution function.
Abstract:
A dynamic delegation chain of executor objects can, at runtime, adapt code units to be executed as isolated computations prior to their execution to comport with current state of an environment. A dynamic delegation chain performs the dynamic runtime adaptation of the code unit in accordance with isolated computations that host the executor objects of the delegation chain. Adapting a code unit prior to execution of the code unit allows adaptation of the code unit to a current state, as well as at least reducing concerns of program integrity.
Abstract:
Data are maintained in a distributed computing system that describe a directed graph representing relationships among items. The directed graph has a plurality of vertices representing the items and has edges with values representing distances between the items connected by the vertices. A multiple reference point algorithm is executed for a plurality of the vertices in the directed graph in parallel for a series of synchronized iterations to determine shortest distances between the vertices and the source vertex. After executing the algorithm on the vertices, value pairs associated with the vertices are aggregated. The aggregated value pairs indicate shortest distances from the respective vertices to the source vertex. The aggregated value pairs are outputted.
Abstract:
Data are received at a worker system in a distributed computing system that describe a graph representing relationships among a set of items. The graph models a condition having an associated problem. The graph has graph components having associated data fields. The received data are stored in a backup table, and the relationships are analyzed to identify a solution to the problem. As part of the analysis, a new value for the data field associated with a graph component is identified and compared with an existing value of the data field, and the data field is modified. The modified data field is stored in a delta table representing a change to the backup table.
Abstract:
A method for implementing virtual method invocation when a compiled code of an invoked method is shared between class types that share a runtime representation is provided. In this method, an entry of an inline cache is set to a reference to an object. Subsequently, instructions for calling code are modified and the inline cache is set to be in one of an unresolved state, a monomorphic state, a shared monomorphic state, or a megamorphic state. A computer readable medium and a system for implementing virtual method invocation are also described.
Abstract:
The present invention relates to computer systems and methods for providing a memory buffer for use with native and platform-independent software code. In a particular embodiment, the method includes providing a first software program compiled to platform-independent code for execution in a first process of the computer system, providing a second software program compiled to native code for execution in a second process of the computer system, and sending a message from the first process to the second process to request a memory buffer. In another particular embodiment, the computer system includes a processor and a memory. The computer system includes a first process to execute a first software program coded in a safe language, a second process to execute a second software program coded in an unsafe language, and an inter-process communication mechanism that allows data message communication between the first process and the second process. The inter-process communication mechanism includes a command that provides for transmission of a message from the first process to the second process to request creation of a direct buffer that is mapped from both the first process and the second process to a common memory area.
Abstract:
Combining different resource types into a single logical resource can provide a perspective more suitable for managing a given computer program. Resources of different types that have similar characteristics are combined as a single resource type. Resource management policies are applied against the different resource types via the single combination resource type, wherein on a single computer or applied against a cluster of computers.
Abstract:
System and method for supporting per-program classpath and class sharing in a multi-tasking virtual machine. A virtual machine may allow each program to specify its classpath independently of other programs classpaths. Tasks that specify identical classpaths for their respective class loaders may share the runtime representation of classes. A multi-tasking virtual machine may generate and compare canonical forms of classpaths to determine which programs may share classes with each other. The runtime representation of a class may be split between shared and private portions of the runtime representation. A shared runtime representation may be associated with multiple private runtime representations. In one embodiment, unique class loader keys and a system dictionary may be used to associate tasks, class loaders and the shared representations of classes.
Abstract:
A value is distributed in a distributed computing system having a master system in communication with a plurality of worker systems. Partitions of a graph are assigned to the worker systems. The graph represents relationships among a set of tangible items that model a real-world condition having an associated problem. Configuration information is determined that describes a configuration of the distributed computing system. A distribution scheme is selected for distributing a value from the master system to the plurality of worker systems based on the configuration information. The value is distributed from the master system to the worker systems according to the selected distribution scheme. The worker systems are configured to use the value to produce an output representing a solution to the real-world problem.
Abstract:
Executing a confined recovery in a distributed system having a plurality of worker systems including a failed worker system at a current superstep. The confined recovery includes determining states of the partitions of the worker systems during the supersteps preceding the current superstep, and determining a recovery initiation superstep preceding the current superstep in which all messages for recovery initiation superstep are available. The recovery initiation superstep is determined responsive to determining the states of the partitions. Additionally, a recovery set of partitions is determined for which messages in supersteps after the recovery initiation superstep are not available. The worker systems having the partitions in the recovery set are instructed to execute the defined function for the partitions in the recovery set starting at the recovery initiation superstep to recover the lost exchanged messages.