-
1.
公开(公告)号:US20240285221A1
公开(公告)日:2024-08-29
申请号:US18587636
申请日:2024-02-26
申请人: Encephalogix, Inc.
发明人: Daniel Korenblum , Thadd C. Reeder
CPC分类号: A61B5/372 , A61B5/4094 , A61B5/4836 , A61B5/7267 , A61B5/165 , A61B5/291 , A61B5/31 , A61B5/369 , A61B5/374 , A61B5/72 , A61B5/7235 , A61B5/7264 , A61B5/7275 , A61N1/36064 , G06F3/015 , G06N3/02 , G06N20/00 , G06N20/10 , G06N20/20 , G06N99/00 , H04L41/16
摘要: A detection function is used to detect an event in an electroencephalogram (EEG) signal in order to generate a plurality of detected events. For each detected event in the plurality of detected events, a plurality of features from the EEG signal is measured in order to obtain a measured feature vector, where the plurality of features is defined by a feature space corresponding to the event and a measured feature space includes a plurality of measured feature vectors corresponding to a plurality of labeled points having locations. The EEG signal is classified based at least in part on the locations of the plurality of labeled points in the measured feature space.
-
公开(公告)号:US12067483B2
公开(公告)日:2024-08-20
申请号:US16431393
申请日:2019-06-04
发明人: Bin Wu , Fengwei Zhou , Zhenguo Li
摘要: Embodiments of the present invention provide a machine learning model training method, including: obtaining target task training data and N categories of support task training data; inputting the target task training data and the N categories of support task training data into a memory model to obtain target task training feature data and N categories of support task training feature data; training the target task model based on the target task training feature data and obtaining a first loss of the target task model, and separately training respectively corresponding support task models based on the N categories of support task training feature data and obtaining respective second losses of the N support task models; and updating the memory model, the target task model, and the N support task models based on the first loss and the respective second losses of the N support task models.
-
公开(公告)号:US20240205118A1
公开(公告)日:2024-06-20
申请号:US18593403
申请日:2024-03-01
发明人: Sunil Kumar Gupta , Navindra Yadav , Michael Standish Watts , Ali Parandehgheibi , Shashidhar Gandham , Ashutosh Kulshreshtha , Khawar Deen
IPC分类号: H04L43/045 , G06F3/0482 , G06F3/04842 , G06F3/04847 , G06F9/455 , G06F16/11 , G06F16/13 , G06F16/16 , G06F16/17 , G06F16/174 , G06F16/23 , G06F16/2457 , G06F16/248 , G06F16/28 , G06F16/29 , G06F16/9535 , G06F21/53 , G06F21/55 , G06F21/56 , G06N20/00 , G06N99/00 , G06T11/20 , H04J3/06 , H04J3/14 , H04L1/24 , H04L7/10 , H04L9/08 , H04L9/32 , H04L9/40 , H04L41/046 , H04L41/0668 , H04L41/0803 , H04L41/0806 , H04L41/0816 , H04L41/0893 , H04L41/12 , H04L41/16 , H04L41/22 , H04L43/02 , H04L43/026 , H04L43/04 , H04L43/062 , H04L43/08 , H04L43/0805 , H04L43/0811 , H04L43/0829 , H04L43/0852 , H04L43/0864 , H04L43/0876 , H04L43/0882 , H04L43/0888 , H04L43/10 , H04L43/106 , H04L43/12 , H04L43/16 , H04L45/00 , H04L45/302 , H04L45/50 , H04L45/74 , H04L47/11 , H04L47/20 , H04L47/2441 , H04L47/2483 , H04L47/28 , H04L47/31 , H04L47/32 , H04L61/5007 , H04L67/01 , H04L67/10 , H04L67/1001 , H04L67/12 , H04L67/50 , H04L67/51 , H04L67/75 , H04L69/16 , H04L69/22 , H04W72/54 , H04W84/18
CPC分类号: H04L43/045 , G06F3/0482 , G06F3/04842 , G06F3/04847 , G06F9/45558 , G06F16/122 , G06F16/137 , G06F16/162 , G06F16/17 , G06F16/173 , G06F16/174 , G06F16/1744 , G06F16/1748 , G06F16/2322 , G06F16/235 , G06F16/2365 , G06F16/24578 , G06F16/248 , G06F16/285 , G06F16/288 , G06F16/29 , G06F16/9535 , G06F21/53 , G06F21/552 , G06F21/556 , G06F21/566 , G06N20/00 , G06N99/00 , G06T11/206 , H04J3/0661 , H04J3/14 , H04L1/242 , H04L7/10 , H04L9/0866 , H04L9/3239 , H04L9/3242 , H04L41/046 , H04L41/0668 , H04L41/0803 , H04L41/0806 , H04L41/0816 , H04L41/0893 , H04L41/12 , H04L41/16 , H04L41/22 , H04L43/02 , H04L43/026 , H04L43/04 , H04L43/062 , H04L43/08 , H04L43/0805 , H04L43/0811 , H04L43/0829 , H04L43/0841 , H04L43/0858 , H04L43/0864 , H04L43/0876 , H04L43/0882 , H04L43/0888 , H04L43/10 , H04L43/106 , H04L43/12 , H04L43/16 , H04L45/306 , H04L45/38 , H04L45/46 , H04L45/507 , H04L45/66 , H04L45/74 , H04L47/11 , H04L47/20 , H04L47/2441 , H04L47/2483 , H04L47/28 , H04L47/31 , H04L47/32 , H04L61/5007 , H04L63/0227 , H04L63/0263 , H04L63/06 , H04L63/0876 , H04L63/1408 , H04L63/1416 , H04L63/1425 , H04L63/1433 , H04L63/1441 , H04L63/145 , H04L63/1458 , H04L63/1466 , H04L63/16 , H04L63/20 , H04L67/01 , H04L67/10 , H04L67/1001 , H04L67/12 , H04L67/51 , H04L67/75 , H04L69/16 , H04L69/22 , H04W72/54 , H04W84/18 , G06F2009/4557 , G06F2009/45587 , G06F2009/45591 , G06F2009/45595 , G06F2221/033 , G06F2221/2101 , G06F2221/2105 , G06F2221/2111 , G06F2221/2115 , G06F2221/2145 , H04L67/535
摘要: A method provides for receiving network traffic from a host having a host IP address and operating in a data center, and analyzing a malware tracker for IP addresses of hosts having been infected by a malware to yield an analysis. When the analysis indicates that the host IP address has been used to communicate with an external host infected by the malware to yield an indication, the method includes assigning a reputation score, based on the indication, to the host. The method can further include applying a conditional policy associated with using the host based on the reputation score. The reputation score can include a reduced reputation score from a previous reputation score for the host.
-
公开(公告)号:US11902121B2
公开(公告)日:2024-02-13
申请号:US17822656
申请日:2022-08-26
发明人: Khawar Deen , Navindra Yadav , Anubhav Gupta , Shashidhar Gandham , Rohit Chandra Prasad , Abhishek Ranjan Singh , Shih-Chun Chang
IPC分类号: H04L9/40 , G06F16/00 , G06F21/60 , H04L43/045 , G06F9/455 , G06N20/00 , G06F21/55 , G06F21/56 , G06F16/28 , G06F16/2457 , G06F16/248 , G06F16/29 , G06F16/16 , G06F16/17 , G06F16/11 , G06F16/13 , G06F16/174 , G06F16/23 , G06F16/9535 , G06N99/00 , H04L9/32 , H04L41/0668 , H04L43/0805 , H04L43/0811 , H04L43/0852 , H04L43/106 , H04L45/00 , H04L45/50 , H04L67/12 , H04L43/026 , H04L61/5007 , H04L67/01 , H04L67/51 , H04L67/75 , H04L67/1001 , H04W72/54 , H04L43/062 , H04L43/10 , H04L47/2441 , H04L41/0893 , H04L43/08 , H04L43/04 , H04W84/18 , H04L67/10 , H04L41/046 , H04L43/0876 , H04L41/12 , H04L41/16 , H04L41/0816 , G06F21/53 , H04L41/22 , G06F3/04842 , G06F3/04847 , H04L41/0803 , H04L43/0829 , H04L43/16 , H04L1/24 , H04L9/08 , H04J3/06 , H04J3/14 , H04L47/20 , H04L47/32 , H04L43/0864 , H04L47/11 , H04L69/22 , H04L45/74 , H04L47/2483 , H04L43/0882 , H04L41/0806 , H04L43/0888 , H04L43/12 , H04L47/31 , G06F3/0482 , G06T11/20 , H04L43/02 , H04L47/28 , H04L69/16 , H04L45/302 , H04L67/50
CPC分类号: H04L43/045 , G06F3/0482 , G06F3/04842 , G06F3/04847 , G06F9/45558 , G06F16/122 , G06F16/137 , G06F16/162 , G06F16/17 , G06F16/173 , G06F16/174 , G06F16/1744 , G06F16/1748 , G06F16/235 , G06F16/2322 , G06F16/2365 , G06F16/248 , G06F16/24578 , G06F16/285 , G06F16/288 , G06F16/29 , G06F16/9535 , G06F21/53 , G06F21/552 , G06F21/556 , G06F21/566 , G06N20/00 , G06N99/00 , G06T11/206 , H04J3/0661 , H04J3/14 , H04L1/242 , H04L9/0866 , H04L9/3239 , H04L9/3242 , H04L41/046 , H04L41/0668 , H04L41/0803 , H04L41/0806 , H04L41/0816 , H04L41/0893 , H04L41/12 , H04L41/16 , H04L41/22 , H04L43/02 , H04L43/026 , H04L43/04 , H04L43/062 , H04L43/08 , H04L43/0805 , H04L43/0811 , H04L43/0829 , H04L43/0841 , H04L43/0858 , H04L43/0864 , H04L43/0876 , H04L43/0882 , H04L43/0888 , H04L43/10 , H04L43/106 , H04L43/12 , H04L43/16 , H04L45/306 , H04L45/38 , H04L45/46 , H04L45/507 , H04L45/66 , H04L45/74 , H04L47/11 , H04L47/20 , H04L47/2441 , H04L47/2483 , H04L47/28 , H04L47/31 , H04L47/32 , H04L61/5007 , H04L63/0227 , H04L63/0263 , H04L63/06 , H04L63/0876 , H04L63/145 , H04L63/1408 , H04L63/1416 , H04L63/1425 , H04L63/1433 , H04L63/1441 , H04L63/1458 , H04L63/1466 , H04L63/16 , H04L63/20 , H04L67/01 , H04L67/10 , H04L67/1001 , H04L67/12 , H04L67/51 , H04L67/75 , H04L69/16 , H04L69/22 , H04W72/54 , H04W84/18 , G06F2009/4557 , G06F2009/45587 , G06F2009/45591 , G06F2009/45595 , G06F2221/033 , G06F2221/2101 , G06F2221/2105 , G06F2221/2111 , G06F2221/2115 , G06F2221/2145 , H04L67/535
摘要: A method includes capturing first data associated with a first packet flow originating from a first host using a first capture agent deployed at the first host to yield first flow data, capturing second data associated with a second packet flow originating from the first host from a second capture agent deployed on a second host to yield second flow data and comparing the first flow data and the second flow data to yield a difference. When the difference is above a threshold value, the method includes determining that the second packet flow was transmitted by a component that bypassed an operating stack of the first host or a packet capture agent at the device to yield a determination, detecting that hidden network traffic exists, and predicting a malware issue with the first host based on the determination.
-
公开(公告)号:US20230205918A1
公开(公告)日:2023-06-29
申请号:US18070299
申请日:2022-11-28
申请人: INTEL CORPORATION
发明人: Micah Sheller , Cory Cornelius
IPC分类号: G06F21/62 , H04L67/10 , G06N20/00 , G06F16/951 , G06N3/063 , G06F21/74 , G06N3/08 , G06N99/00 , G06N3/04 , G06F18/21 , G06F18/2411 , G06N3/045
CPC分类号: G06F21/6245 , H04L67/10 , G06N20/00 , G06F16/951 , G06N3/063 , G06F21/74 , G06N3/08 , G06N99/00 , G06N3/04 , G06F18/21 , G06F18/2411 , G06N3/045
摘要: Methods, apparatus, systems and articles of manufacture for distributed use of a machine learning model are disclosed. An example edge device includes a model partitioner to partition a machine learning model received from an aggregator into private layers and public layers. A public model data store is implemented outside of a trusted execution environment of the edge device. The model partitioner is to store the public layers in the public model data store. A private model data store is implemented within the trusted execution environment. The model partitioner is to store the private layers in the private model data store.
-
公开(公告)号:US11681778B2
公开(公告)日:2023-06-20
申请号:US16322338
申请日:2016-08-03
申请人: SHIMADZU CORPORATION
发明人: Akira Noda
IPC分类号: G06F17/18 , G06N99/00 , G01N30/78 , G01N21/00 , G16B40/00 , G16B40/30 , G01N21/35 , G01N23/223 , G01N27/62 , G01N30/86 , G01N33/44 , G01N33/48 , G06N3/08
CPC分类号: G06F17/18 , G01N21/00 , G01N21/35 , G01N23/223 , G01N27/62 , G01N30/78 , G01N30/8675 , G01N33/442 , G01N33/48 , G06N3/08 , G06N99/00 , G16B40/00 , G16B40/30
摘要: An analysis data processing method for processing analysis data collected with an analyzing device for each of a plurality of samples, by applying an analytical technique using statistical machine learning to multidimensional analysis data formed by output values obtained from a plurality of channels of a multichannel detector provided in the analyzing device, the method including: acquiring a non-linear regression or non-linear discrimination function expressing analysis data obtained for known samples; calculating a contribution value of each of the output values obtained from the plurality of channels forming the analysis data of the known samples, to the acquired non-linear regression or non-linear discrimination function, based on a differential value of the non-linear regression function or non-linear discrimination function; and identifying one or more of the plurality of channels of the detector, which are to be used for processing analysis data obtained for an unknown sample, based on the contribution value.
-
7.
公开(公告)号:US20190220778A1
公开(公告)日:2019-07-18
申请号:US16327112
申请日:2016-10-04
IPC分类号: G06N20/00 , G06F17/11 , G06F9/30 , G06F16/9035
CPC分类号: G06N20/00 , G06F9/3001 , G06F9/44 , G06F11/36 , G06F16/9035 , G06F17/11 , G06F17/50 , G06N99/00
摘要: An analysis unit divides hierarchized program code into a plurality of program elements in accordance with a predetermined division condition, analyzes each of the plurality of program elements, and extracts an attribute of each program element and a hierarchy of the plurality of program elements. A functional module extraction unit performs machine learning on the basis of the attribute of each program element and the hierarchy of the plurality of program elements extracted by the analysis unit and groups the plurality of program elements into a plurality of groups.
-
公开(公告)号:US20190199373A1
公开(公告)日:2019-06-27
申请号:US16309281
申请日:2016-06-24
发明人: Jun HEO , Il Kwon SOHN
CPC分类号: H03M13/1108 , G06N10/00 , G06N99/00 , H03M13/11 , H03M13/29 , H03M13/616
摘要: Provided is a quantum error correction code generating method using a graph state. According to the exemplary embodiment of the present invention, a quantum error correction code generating method using a graph state: includes: generating a graph state representing an adjacency relationship between a plurality of qubits including at least one entangled qubit (ebit); generating a first stabilizer generator which corresponds to the graph state and is configured by a plurality of stabilizers for detecting errors of the plurality of qubits; and generating at least one logical Z operator used for a phase flip operation of a codeword, at least one logical X operator used for a bit flip operation of a codeword, and a second stabilizer generator which is a sub set of the first stabilizer generator, based on the first stabilizer generator and the at least one entangled qubit.
-
公开(公告)号:US20190188263A1
公开(公告)日:2019-06-20
申请号:US16323230
申请日:2017-05-17
发明人: Cheol Young Ock , Joon Choul Shin , Ju Sang Lee
CPC分类号: G06F17/2785 , G06F17/27 , G06F17/277 , G06F17/2795 , G06N3/08 , G06N20/00 , G06N99/00 , G10L15/063
摘要: A word semantic embedding apparatus includes: a data storing unit to store a lexical semantic network including word dictionary data and word semantic data; a word list generating unit to extract vocabularies having a predetermined part of speech from the stored word dictionary data and generate a list of words to be learned; a processing data generating unit to bring the generated list of words to be learned and the word semantic data of a word to be learned included in the list of words to be learned from the data storing unit and process the data suitable for word embedding learning to generate processing data; and a word embedding learning unit to learn the word to be learned through the word embedding learning using a learning model formed of an input/output layer and a projection layer with the generated processing data to generate a word vector.
-
公开(公告)号:US20180349757A1
公开(公告)日:2018-12-06
申请号:US16059100
申请日:2018-08-09
申请人: OMRON Corporation
发明人: Tanichi ANDO
CPC分类号: G06N99/00
摘要: A request acceptance unit accepts, as learning request information, information necessary for performing machine learning with respect to an ability to be added to a target apparatus, from a requester. A learning simulator performs machine learning according to the learning request information accepted from the requester. An ability providing data generation unit generates, based on a learning result obtained by the learning simulator, ability providing data, which is data for adding a new ability acquired as the learning result to the target apparatus. A service providing unit provides the ability providing data to the requester.
-
-
-
-
-
-
-
-
-