Abstract:
A fiber having increased cut resistance is made from a fiber-forming polymer and a hard filler having a Mohs Hardness Value greater than about 3. The filler is included in an amount of about 0.05% to about 20% by weight. In preferred embodiments, the fiber-forming polymer is poly(ethylene terephthalate) or a liquid crystalline polyester including monomer units derived from 6-hydroxy-2-naphthoic acid and 4-hydroxybenzoic acid. Preferred fillers include tungsten and alumina.
Abstract:
A fiber having increased cut resistance is made from a fiber-forming polymer and a hard filler having a Mohs Hardness Value greater than about 3. The filler is included in an amount of about 0.05% to about 20% by weight. In preferred embodiments, the fiber-forming polymer is poly(ethylene terephthalate) or a liquid crystalline polyester comprising monomer units derived from 6-hydroxy-2-naphthoic acid and 4-hydroxybenzoic acid. Preferred fillers include tungsten and alumina.
Abstract:
A process is provided for modifying the properties of a hydrophobic microporous membrane which includes the steps of first providing a hydrophobic microporous membrane, treating it with a surfactant to render the membrane hydrophilic, wetting the membrane with an aqueous solution of a polyol such as polyvinyl alcohol (PVA) and divinyl sulfone (DVS) or a precursor thereof, washing the membrane with water to displace the polyol/DVA from the exterior of the membrane while retaining it in the pores of the membrane, and crosslinking the polyol/DVS into an aqueous gel to yield a hydrophilic microporous membrane having pores filled with an aqueous polyol/DVS gel, the exterior of the membrane being unobstructed by gel. The modified membranes produced according to the process are useful in carrying out chromatographic separations.
Abstract:
A pore modified microporous membrane is disclosed which is made by the process of incorporating a polymerizable vinyl monomer within the pores of a microporous membrane followed by polymerization to secure the resulting polymer within the pores. The process is particularly suitable for modifying a hydrophobic microporous membrane with a hydrophilic polymer, as occurs for example when polyacrylic acid is secured into the pores of a polypropylene microporous membrane. In further applications of the present invention, the inventive method may be used to produce liquid membrane supports for use with or without active carriers.
Abstract:
Surface modification of polyester material is obtained by contacting the material in substantially non-crystallized form with a non-crystallizable oligomer. The oligomer has ester linkages and is prepared from a reaction mixture which includes at least one polyol having a functionality greater than three and selected from the group consisting of pentaerythritol, low molecular weight polymers of pentaerythritol, glycerol, low molecular weight polymers of glycerol and mixtures thereof. After contact with the oligomer, the polyester is crystallized. The modified polyester material exhibits improved properties such as hydrophilicity and/or adhesive bonding.
Abstract:
A laminated sheet includes a surface layer having an optical surface that is of fire-polished quality and a core layer having a higher modulus than the surface layer to increase an overall stiffness or fracture toughness of the laminated sheet.
Abstract:
A fiber having increased cut resistance is made from a fiber-forming polymer and a hard filler having a Mohs Hardness Value greater than about 3. The filler is included in an amount of about 0.05% to about 20% by weight. In preferred embodiments, the fiber-forming polymer is poly(ethylene terephthalate) or a liquid crystalline polyester comprising monomer units derived from 6-hydroxy-2-naphthoic acid and 4-hydroxybenzoic acid. Preferred fillers include tungsten and alumina.
Abstract:
A fiber having increased cut resistance is made from a fiber-forming polymer and a hard filler having a Mohs Hardness Value greater than about 3. The filler is included in an amount of about 0.05% to about 20% by weight. In preferred embodiments, the fiber-forming polymer is poly(ethylene terephthalate) or a liquid crystalline polyester comprising monomer units derived from 6-hydroxy-2-naphthoic acid and 4-hydroxybenzoic acid. Preferred fillers include tungsten and alumina.
Abstract:
A surface-modified fibrous material which includes hydrocarbon polymer fibers having cationic or anionic groups on the surfaces thereof and coated with a polyelectrolyte having a net charge opposite to that of the cationic or anionic groups on the surfaces of the fibers. The hydrocarbon polymer may be, by way of illustration, a polyolefin, such as polyethylene or polypropylene. The cationic or anionic groups may be carboxylic acid, sulfonic acid groups, or quaternary ammonium groups. Examples of polyelectrolytes include chitosan, poly(methacryloxyethyltrimethylammonium bromide), poly(acrylic acid), and poly(styrene sulfonate). Also disclosed is a method of making the surface-modified fibrous material. The surface-modified fibrous material may be used as a filtration medium for liquids.
Abstract:
The process for forming a microporous polymeric semi-crystalline film, involving the steps of cold compressive extruding a precursor film, preferably in a biaxial fashion, so as to compress the film by a factor of about 2 to 1 to about 10 to 1, stretching the film by about 100 to about 500 percent, preferably in a biaxial fashion, and heat annealing either before, during, or preferably after the stretching step at a temperature up to the alpha transition temperature of the polymer for a time sufficient to maintain the microporous character of the final film.