Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE), served by a cell of a base station, may identify a time division duplexing (TDD) configuration for a first cell, wherein the TDD configuration includes a symbol pattern for a slot. The base station may determine an overlap between a downlink symbol or a flexible symbol and an uplink symbol during symbols of the slot based on a TDD configuration. A first UE may receive a configuration for transmitting a cross-link interference (CLI) sounding reference signal (SRS) to a second UE according to the configuration. The second UE may measure the CLI SRS and report the measurement.
Abstract:
A multi-band user equipment (UE) is configured to operate in a single frequency band mode or a multiple frequency band mode. When operating in a single frequency band mode, the UE activates a bypass switch to route uplink signals of a first band around a multiplexer and reduce the insertion loss for the band.
Abstract:
User Equipments (UEs) can be adapted to enter into a lower RRC state from a higher RRC state, and search for one or more layers of higher priority within a predetermined period of time upon entering into the lower RRC state. According to at least one aspect, this search for one or more layers of higher priority may be performed irrespective of RF quality of a current serving cell. According to at least another aspect, this search for one or more layers of higher priority may be conducted within the predetermined period of time if a wait period has elapsed since the UE camped on the current serving cell. If the wait period has not elapsed since camping on the current serving cell, the search for one or more layers of higher priority may be performed within the predetermined period of time following a duration of the wait period.
Abstract:
Methods, systems, and devices for wireless communication are described. In some cases, due to blind decoding and channel estimation (CE) limits, one or more user equipment (UE) specific search sets may be pruned for blind decoding and/or CE purposes. For instance, after hashing a set of common decoding candidates to control channel elements (CCEs) within the control region, the UE specific search sets may be pruned so as to conform to the blind decode limitation, since a common search space has already occupied a portion of the total blind decode limit. Following pruning, the UE may hash the sets of UE-specific decoding candidates associated with the one or more UE specific search sets to CCEs within the control region. The UE may further prune UE specific search sets, based on CE limits, while reusing CE for overlapping hashed locations.
Abstract:
Apparatus and methods that provide wireless communications, where a method for wireless communications includes receiving at a Node B a first set of bits indicating at least two frequency bands supported by a UE for HSDPA, the first set of bits further specifying a number of downlink adjacent carriers supported by the UE for each of the at least two frequency bands. The method also includes transmitting a first set of bits indicating support for a set of carriers for each band, the information comprising information related to a maximum channel bandwidth supported for that band; and transmitting a second set of bits indicating a configuration for the set of carriers under which multiple uplinks will be supported.
Abstract:
Systems and methods for effectuating a signal carrier configuration are disclosed. In one embodiment, the method comprises receiving an order, determining a signal carrier on which the order was received, determining a signal carrier configuration based at least in part on the order and the determined signal carrier, and changing the state of one or more signal carriers to effectuate the signal carrier configuration.
Abstract:
A multi-band user equipment (UE) is configured to operate in a single frequency band mode or a multiple frequency band mode. When operating in a single frequency band mode, the UE activates a bypass switch to route uplink signals of a first band around a multiplexer and reduce the insertion loss for the band.
Abstract:
Methods, systems and apparatuses for controlling radio links in a multiple carrier wireless communication system are disclosed. A method can include aggregating control functions from at least two carriers onto one carrier to form an anchor carrier and one or more associated secondary carriers; establishing communication links for the anchor carrier and each secondary carrier; and controlling communication based on the anchor carrier.
Abstract:
Systems and methodologies are described that facilitate synthesizing a single baseband waveform from digital signals related to multiple carriers. Digital signals can be received relating to a plurality of carriers. The digital signals can result from spreading data symbols from transport blocks to create chip sequences, which can additionally be pulse shaped. The digital signals can be rotated in a positive or negative direction, such as according to a complex sinusoid or a negative representation thereof. The rotated signals can be combined or added to generate a single baseband waveform. The single baseband waveform can be converted to an analog signal, which can be up-converted and centered at a plurality of frequency carriers, which can be adjacent, assigned for transmitting the signal. In addition, optimizations can be provided to ensure threshold power ratio over the plurality of carriers for effectively transmitting jointly encoded signals.
Abstract:
Methods, systems and apparatuses for controlling radio links in a multiple carrier wireless communication system are disclosed. A method can include aggregating control functions from at least two carriers onto one carrier to form an anchor carrier and one or more associated secondary carriers; establishing communication links for the anchor carrier and each secondary carrier; and controlling communication based on the anchor carrier.