Abstract:
The disclosed embodiments are directed to processes for removing photoreceptor coatings from a substrate, wherein the photoreceptor coatings disposed over a substrate of an electrophotographic photoreceptor. More specifically, the present embodiments discloses a photoreceptor coatings removal process comprises subjecting an electrophotographic photoreceptor to a stripping solution that separates the coatings from the substrate.
Abstract:
Embodiments relate generally to an imaging member that facilitates removal of the imaging member coating layers disposed over the imaging member and environmentally or “green” methods for using the same. More specifically, the present embodiments disclose an electrophotographic photoreceptor that includes a specifically formulated undercoat layer that allows easy removal of the photoreceptor layers disposed on top of the undercoat layer. The present embodiments provide a simple yet efficient method for reclaiming recycling or remanufacturing electrophotographic photoreceptors.
Abstract:
A photoconductive imaging member comprised of an optional supporting substrate, a hole blocking layer thereover, a photogenerating layer, and a charge transport layer, and wherein the hole blocking layer is comprised of a pyrolyzed polyacrylonitrile.
Abstract:
A photoconductor that includes, for example, a supporting substrate, an undercoat layer thereover that contains a metal oxide, a phenolic resin, and a pentanediol ester; a photogenerating layer; and at least one charge transport layer.
Abstract:
A photoconductive imaging member comprised of an optional supporting substrate, a hole blocking layer thereover, a photogenerating layer, and a charge transport layer, and wherein the hole blocking layer is comprised of a pyrolyzed polyacrylonitrile.
Abstract:
A charge transport layer material for a photoreceptor includes at least a polycarbonate polymer binder having a number average molecular weight of not less than 35,000, at least one charge transport material, polytetrafluoroethylene particle aggregates having an average size of less than about 1.5 microns and a fluorine-containing polymeric surfactant dispersed in a solvent mixture of at least tetrahydrofuran and toluene. The dispersion is able to form a uniform and stable material ideal for use in forming a charge transport layer of a photoreceptor. The resultant charge transport layer exhibits excellent wear resistance against contact with an AC bias charging roll, excellent electrical performance, and delivers superior print quality.
Abstract:
A charge transport layer material for a photoreceptor includes at least a polycarbonate polymer, at least one charge transport material, polytetrafluoroethylene particle aggregates having an average size of less than about 1.5 microns, hydrophobic silica and a fluorine-containing polymeric surfactant dispersed in a solvent. The presence of the hydrophobic silica enables the dispersion to have superior stability by preventing settling of the PTFE particles. A resulting charge transport layer produced from the dispersion exhibits excellent wear resistance against contact with an AC bias charging roll, excellent electrical performance, and delivers superior print quality.
Abstract:
A photoreceptor including: (a) a substrate; (b) a charge blocking layer comprising a polymer polymerized fiom at least one monomer including vinylbenzyl alcohol monomer; and (c) at least one imaging layer.