摘要:
A thin, lightweight solar cell utilizes front contact metallization. Both the front light receiving surface of the solar cell and the facing surface of the cover glass are recessed to accommodate this metallization. This enables the two surfaces to meet flush for an optimum seal.
摘要:
The resistance to radiation damage of an n.sup.+ p boron doped silicon solar cell is improved by lithium counterdoping. Even though lithium is an n-dopant in silicon, the lithium is introduced in small enough quantities so that the cell base remains p-type.The lithium is introduced into the solar cell wafer 10 by implantation of lithium ions whose energy is about 50 keV. After this lithium implantation, the wafer is annealed in a nitrogen atmosphere at 375.degree. C. for two hours.
摘要:
Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.
摘要:
Diffusants are applied onto semiconductor solar cell substrates using screen printing techniques. The method is applicable to square and rectangular cells and can be used to apply dopants of opposite types to the front and back of the substrate. Then, simultaneous diffusion of both dopants can be performed with a single furnace pass.
摘要:
An improved solar cell assembly is provided for use under high intensity illumination conditions where heat is a problem.The solar cell assembly includes a solar cell having an overlay of a semi-transparent coating of a metal, such as aluminum or silver, which covers the entire surface thereof. The purpose of the coating is to lower the amount of incident radiation on the cell and thereby lower cell temperature. The use of the semi-transparent coating over the entire cell surface uniformly limits incident radiation and hence reduces cell heat without any temperature gradients. The coating also lowers series cell resistance. The coating may be directly deposited on the cell surface or on the undersurface of a cover plate bonded to the cell.
摘要:
A space construction method and system transports construction materials, a propellant depot, solar electric propulsion (SEP) vehicles, and robotic equipment from Earth into a lower-Earth orbit. The SEP vehicles are used to transport payload between the lower-Earth orbit and a construction area in higher-Earth orbit, such as GEO. The robotic equipment transfers materials between various vehicles and assembles the transported construction materials in the higher-Earth orbit. A tug SEP vehicle transports heavier construction materials from the propellant depot in lower-Earth orbit to the construction area in higher-Earth orbit. A propulsion stage SEP vehicles transport lighter construction materials from the propellant depot to the construction area. The tug is also transports the fuel-depleted propulsion stages from higher-Earth orbit back to the propellant depot in lower-Earth orbit, where both the tug and the propellant stages are refueled and reloaded for another trip to the construction area in higher-Earth orbit. As additional supplies they are transported from Earth to the propellant depot in lower-Earth orbit.
摘要:
The application discloses a back-well cell, for example, a solar cell which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, one may employ a metallic layer to form a Schottky diode. If the metallic Schottky diode layer is used, no additional back contact is needed. A contact such as a gridded contact, pervious to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.