摘要:
There is provided a method of forming an element isolation layer, the method including: forming a pad oxide layer and a nitride layer in succession on a front face of a semiconductor substrate; forming a trench so as to penetrate through the pad oxide layer and the nitride layer and into the semiconductor substrate; forming an in-fill oxide layer so as to fill the trench and cover the nitride layer; polishing the in-fill oxide layer using a first polishing agent so as to leave in-fill oxide layer remaining over the nitride layer; and polishing the in-fill oxide layer using a second polishing agent having a polishing selectivity ratio of the in-fill oxide layer to the nitride layer greater than that of the first polishing agent, so as to expose the nitride layer and flatten the exposed faces of the nitride layer and the in-fill oxide layer.
摘要:
A semiconductor device fabrication method deposits a dielectric stress-canceling film on oxide films formed on the surfaces of a semiconductor substrate and its isolation trenches, and partly etches the dielectric stress-canceling film to leave a dielectric base film inside each trench and a dielectric top film outside each trench. The trenches are then filled with a dielectric layer that covers the dielectric top and base films, the upper part of this dielectric layer is removed to expose the dielectric top films, and the dielectric top films are selectively etched, using the trench-filling dielectric layer as an etching mask. In the resulting trench isolation structure, the trenches are completely filled with dielectric material, and stress exerted by the oxide films in the trenches during heat treatment is canceled by opposing stress exerted by the dielectric base films.
摘要:
A method for manufacturing a semiconductor device including sidewall insulating films with different thicknesses includes the steps of (a) selectively forming first and second gate electrode structures on first and second active regions of a silicon substrate respectively, (b) forming a first silicon oxide film on the first and second active regions, (c) forming first and second lightly-doped regions in the first and second active regions respectively, (d) removing the first silicon oxide film formed on the first active region while leaving the first silicon oxide film formed on the second active region, (e) forming an insulating film on the first region and an insulating film on the first silicon oxide film formed on the second active region, and (f) forming a first sidewall insulating film on a first gate electrode structure's sidewall while forming a second sidewall insulating film on a second gate electrode structure's sidewall.
摘要:
A semiconductor device of the present invention includes a semiconductor substrate; a diffusion layer formed about a surface of the semiconductor substrate; a first conductive layer formed on the semiconductor substrate, and an insulating layer formed on the semiconductor substrate after the first conductive layer and the diffusion layer are formed, and a second conductive layer formed on the insulating layer, and a first contact formed in the insulating layer, connecting the first conductive layer to the second conductive layer, and a second contact formed in the insulating layer, connecting the first conductive layer to the diffusion layer. In addition, a part of the diffusion layer extends to a lower portion of the first contact.
摘要:
A semiconductor device including a semiconductor substrate, and a plurality of first interconnects formed over the semiconductor substrate. A first insulating layer covers the plurality of first interconnects, and a second insulating layer is formed between the plurality of first interconnects. The second insulating layer has substantially the same height as the plurality of first interconnects. An intermediate insulating layer is formed over the second insulating layer.
摘要:
A rotor for a rotary electrical machine having a superconductive field winding, wherein thermal resistance means is arranged at contact parts between a damper, which is so disposed as to cover the superconductive field winding, and a damper support which supports the damper from the inner side thereof. A plurality of protuberances are formed on either said damper support or said damper for restricting heat flow between said damper and said damper support. It is possible to cause a cooling medium to flow through interstices which are defined at the contact parts between the damper and the damper support.