Abstract:
A system includes at least one common support configured to span at least a width of a web of material in a manufacturing or processing system. The system also includes multiple sensor heads each configured to move independently along at least part of the at least one common support. The sensor heads can be configured to move simultaneously along the at least one common support, and at least one controller can be configured to control movement of the sensor heads so that the sensor heads do not contact one another. Each sensor head could include one or more sensors configured to measure one or more characteristics of the web. Different sensor heads could include different types of sensors. The sensor heads can be configured to move in non-overlapping patterns over or under the web. Different sensor heads can be configured to move at different speeds.
Abstract:
A method includes obtaining information identifying (i) uncertainties associated with multiple time-domain parameters of a model and (ii) time-domain performance specifications for a model-based industrial process controller. The model mathematically represents a MIMO industrial process. The method also includes generating multiple tuning parameters for the controller based on the uncertainties and the time-domain performance specifications. The tuning parameters include vectors of tuning parameters associated with the controller, and each vector includes values associated with different outputs of the industrial process. The time-domain parameters could include a process gain, a time constant, and a time delay for each input-output pair of the model. The time-domain performance specifications could include requirements related to worst-case overshoots, settling times, and total variations. The uncertainties could be specified as intervals in which the time-domain parameters lie.
Abstract:
An apparatus includes a chassis configured to move back and forth along multiple rails. The apparatus also includes electrical contacts configured to form electrical connections to the rails. The apparatus further includes a power converter/conditioner configured to receive power from the rails via the electrical contacts and to convert the power into a different form and/or condition the power. In addition, the apparatus includes one or more sensors configured to measure at least one characteristic of a material, where the one or more sensors are configured to operate using the power from the power converter/conditioner. The electrical contacts could touch the rails and receive the power directly from the rails. The electrical contacts could also touch rail contacts and receive the power indirectly from the rails via the rail contacts.
Abstract:
A system includes a frame having multiple separate supports and multiple flexible rails. Each support is configured to be secured in a position apart from another support, and each flexible rail is configured to be coupled to the supports and placed under tension. The system also includes a sensor head configured to be mounted on the rails and to move back and forth along the rails. The sensor head is substantially self-contained and configured to receive operating power over the rails. The frame may further include a tensioned member configured to be coupled to the supports, and the sensor head can be configured to move back and forth using the tensioned member. The sensor head can be self-contained in that the sensor head does not push and pull any wiring assembly during movement along the rails.
Abstract:
A gap and displacement magnetic sensor system for scanner heads in paper machines or other systems includes a multiple-sensor assembly. The multiple-sensor assembly includes multiple magnetic field orientation sensors configured to capture measurements of a magnetic field in order to identify (i) a displacement of first and second scanning sensor heads in a first direction, and (ii) a gap separation of the first and second scanning sensor heads in a second direction, and (iii) a displacement of the first and second scanning sensor heads in a third direction. At least one of the magnetic field orientation sensors is disposed offset from a centerline of the magnetic field such that an output from the at least one magnetic field orientation sensor indicates a combination of the gap separation and the displacement in either the first direction or the third direction.
Abstract:
A method includes wirelessly transmitting one or more messages to a sensor assembly in order to synchronize a clock of the sensor assembly. The method also includes wirelessly receiving multiple sensor measurements of a characteristic of a web of material from the sensor assembly. The method further includes receiving timestamps and position data associated with the sensor measurements. In addition, the method includes correlating the sensor measurements, timestamps, and position data. The sensor measurements from the sensor assembly could be timestamped, and the position data could include timestamped position data. The timestamped position data could be received from a source other than the sensor assembly. The method can further include generating a cross direction profile of the web of material using the sensor measurements, timestamps, and positions.
Abstract:
An apparatus includes a chassis configured to move back and forth along multiple rails. The apparatus also includes electrical contacts configured to form electrical connections to the rails. The apparatus further includes a power converter/conditioner configured to receive power from the rails via the electrical contacts and to convert the power into a different form and/or condition the power. In addition, the apparatus includes one or more sensors configured to measure at least one characteristic of a material, where the one or more sensors are configured to operate using the power from the power converter/conditioner. The electrical contacts could touch the rails and receive the power directly from the rails. The electrical contacts could also touch rail contacts and receive the power indirectly from the rails via the rail contacts.
Abstract:
An apparatus includes a cable track configured to be coupled to a moveable object and to be pushed and pulled by the movable object without buckling. The cable track is also configured to transport at least one signal or material to or from the moveable object. The cable track has a curved profile. A cross-section of the cable track showing a height, a width, and a thickness of the cable track can have a “(” shape. The cable track can be configured to be bent in order to create a “U” bend in the cable track, and the cable track can be configured to be pushed and pulled without buckling to change a location of the “U” bend along the cable track. The cable track can be configured to change shape repeatedly between a “J” shape and a “U” shape.
Abstract:
A method includes obtaining a reference tracking performance ratio and a disturbance rejection performance ratio associated with a model predictive control (MPC) controller. The method also includes filtering an output target signal for the controller using a first filter based on the reference tracking performance ratio. The method further includes filtering a feedback signal for the controller using a second filter based on the disturbance rejection performance ratio. The filters can provide two degrees of freedom for tuning reference tracking and disturbance rejection operations of the controller. The reference tracking operation of the controller and the disturbance rejection operation of the controller can be independently tunable. The reference tracking performance ratio can control how aggressively the controller responds to a change in the output target signal. The disturbance rejection performance ratio can control how aggressively the controller responds to a disturbance in the feedback signal.
Abstract:
A method includes obtaining a reference tracking performance ratio and a disturbance rejection performance ratio associated with a model predictive control (MPC) controller. The method also includes filtering an output target signal for the controller using a first filter based on the reference tracking performance ratio. The method further includes filtering a feedback signal for the controller using a second filter based on the disturbance rejection performance ratio. The filters can provide two degrees of freedom for tuning reference tracking and disturbance rejection operations of the controller. The reference tracking operation of the controller and the disturbance rejection operation of the controller can be independently tunable. The reference tracking performance ratio can control how aggressively the controller responds to a change in the output target signal. The disturbance rejection performance ratio can control how aggressively the controller responds to a disturbance in the feedback signal.