Abstract:
The present disclosure provides a system and method for identifying a tank containing a liquid from N number of tanks in a semiconductor manufacturing facility into which a batch of semiconductor products may be processed. An incoming batch of products to be processed in a predetermined number of tanks housing the liquid is received. A batch number associated with the batch is identified. A recipe index is determined using a relationship based on, for example, the modulus of N divided by the batch number, and a tank into which the batch is to be processed is determined using another relationship based at least in part on the recipe index and the predetermined number of tanks.
Abstract:
A transport system within a fabrication system. The fabrication system contains a plurality of tool bays, each of which has a plurality of processing tools for processing articles. The transport system contains a plurality of intrabay transport subsystems, an interbay transport subsystem, a plurality of stockers, and at least one linking subsystem. Each intrabay transport subsystem is dedicated to transporting articles within a particular tool bay. The interbay transport subsystem, linking the tool bays, transports articles between the tool bays. The stockers, located between the intrabay and interbay transport subsystems, store articles between processing and transfer articles between the intrabay and interbay transport subsystems. The linking subsystem, located between two adjacent intrabay transport subsystems, provides direct transport between the two corresponding tool bays.
Abstract:
A method for switch dual Id verification systems for installing another carrier ID system on an equipment installation complying with SEMI E87. A first identification access system has internally installed on an equipment installation on which a second identification access system is then installed. Both systems are switched using a control flow and a wafer carrier ID is obtained by the chosen verification system.
Abstract:
A system and method are provided for scheduling a monitor job for a tool in a semiconductor manufacturing environment and for optimizing the scheduling of jobs in such an environment. In one example, the method includes receiving a monitor job and monitoring a status of the tool to determine when a predefined event occurs. A position in a buffer in which to place the monitor job may be identified in response to the event occurring, where placing the monitor job in the identified position will cause the monitor job to be executed at a correct time.
Abstract:
A method for switch dual Id verification systems for installing another carrier ID system on an equipment installation complying with SEMI E87. A first identification access system has internally installed on an equipment installation on which a second identification access system is then installed. Both systems are switched using a control flow and a wafer carrier ID is obtained by the chosen verification system.
Abstract:
A system for manufacturing semiconductor integrated circuit (IC) devices, including an operating control system, a process intermediate station in communication with the operating control system, and a gas purge device, wherein the gas purge device is included in the process intermediate station.
Abstract:
A transport system within a fabrication system. The fabrication system contains a plurality of tool bays, each of which has a plurality of processing tools for processing articles. The transport system contains a plurality of intrabay transport subsystems, an interbay transport subsystem, a plurality of stockers, and at least one linking subsystem. Each intrabay transport subsystem is dedicated to transporting articles within a particular tool bay. The interbay transport subsystem, linking the tool bays, transports articles between the tool bays. The stockers, located between the intrabay and interbay transport subsystems, store articles between processing and transfer articles between the intrabay and interbay transport subsystems. The linking subsystem, located between two adjacent intrabay transport subsystems, provides direct transport between the two corresponding tool bays.
Abstract:
A system for manufacturing semiconductor integrated circuit (IC) devices, including an operating control system, a process intermediate station in communication with the operating control system, and a gas purge device, wherein the gas purge device is included in the process intermediate station.
Abstract:
A system and method are provided for scheduling a monitor job for a tool in a semiconductor manufacturing environment and for optimizing the scheduling of jobs in such an environment. In one example, the method includes receiving a monitor job and monitoring a status of the tool to determine when a predefined event occurs. A position in a buffer in which to place the monitor job may be identified in response to the event occurring, where placing the monitor job in the identified position will cause the monitor job to be executed at a correct time.