摘要:
A switched mode power supply (SMPS) includes a transformer with a primary winding, a secondary winding, an auxiliary winding, and a power switch coupled to the primary winding. During one switching cycle, the auxiliary winding provides a feedback signal which includes a first voltage pulse that is induced after the power switch is turned on and a second voltage pulse that is induced after the power switch is turned off. A control circuit includes a circuit for generating a sampling signal for sampling the second voltage pulse in a switching cycle at a time that is determined based on the first voltage pulse in the same switching cycle. A sample-and-hold circuit is configured for sampling and storing the second voltage pulse in response to the sampling signal. A switching signal generating circuit is configured to generate a switching signal for controlling the power switch based on an output of the sample-and-hold circuit.
摘要:
A control circuit is configured for controlling a power switch to regulate an output of a power converter. The control circuit is configured to increase a switching frequency of the power switch when a first signal representing a magnitude of the power converter is below a first output level. In some embodiment, the first output level is selected such that when the first signal is below the first output level, the power converter may generate audible noise. In an embodiment, when the first signal is above the first output level, the control circuit is configured to turn off the power switch when a second signal representing a current in the power switch is above a first reference level. On the other hand, when the first signal is below the first output level, the control circuit is configured to turn off the power switch if the second signal reaches a lower reference level.
摘要:
A controller for providing a constant output current control signal in a switched mode power supply (SMPS) includes a conduction time compensation circuit that is configured to produce a compensated conduction time interval signal that includes compensation for a ringing waveform of a feedback signal. The compensated signal reflects more accurately the actual conductive time of a rectifying diode in a secondary winding of the switched mode power supply. In one embodiment, the compensated conduction time interval signal is used to generate a fixed ratio between the conduction time and the non-conduction time of the rectifying diode. In another embodiment, the controller also provides a constant voltage control signal.
摘要:
A control circuit is configured for controlling a power switch to regulate an output of a power converter. The control circuit is configured to increase a switching frequency of the power switch when a first signal representing a magnitude of the power converter is below a first output level. In some embodiment, the first output level is selected such that when the first signal is below the first output level, the power converter may generate audible noise. In an embodiment, when the first signal is above the first output level, the control circuit is configured to turn off the power switch when a second signal representing a current in the power switch is above a first reference level. On the other hand, when the first signal is below the first output level, the control circuit is configured to turn off the power switch if the second signal reaches a lower reference level.
摘要:
In a surface inspection system for detecting particles on a surface, a light source mounted to illuminate the surface provides multiple wavelength ranges of electromagnetic radiation. An optical detector produces an image of the surface. An optical signal is produced indicative of returned electromagnetic radiation at each of a plurality of the multiple wavelength ranges from a field of view on the surface. A processor operating on the optical signals resolves presence of a contaminant as a function of the optical signals, and produces a contaminant signal responsive to presence of a contaminant. A heating means positioned to evolve contaminants from the surface is responsively coupled to be activated in response to a contaminant signal. The multiple wavelength ranges comprise ultraviolet, visible, and infrared wavelengths. The processor comprises means to perform false color contrast stretching.
摘要:
A switched mode power supply (SMPS) includes a transformer with a primary winding, a secondary winding, an auxiliary winding, and a power switch coupled to the primary winding. During one switching cycle, the auxiliary winding provides a feedback signal which includes a first voltage pulse that is induced after the power switch is turned on and a second voltage pulse that is induced after the power switch is turned off. A control circuit includes a circuit for generating a sampling signal for sampling the second voltage pulse in a switching cycle at a time that is determined based on the first voltage pulse in the same switching cycle. A sample-and-hold circuit is configured for sampling and storing the second voltage pulse in response to the sampling signal. A switching signal generating circuit is configured to generate a switching signal for controlling the power switch based on an output of the sample-and-hold circuit.
摘要:
A controller for providing a constant output current control signal in a switched mode power supply (SMPS) includes a conduction time compensation circuit that is configured to produce a compensated conduction time interval signal that includes compensation for a ringing waveform of a feedback signal. The compensated signal reflects more accurately the actual conductive time of a rectifying diode in a secondary winding of the switched mode power supply. In one embodiment, the compensated conduction time interval signal is used to generate a fixed ratio between the conduction time and the non-conduction time of the rectifying diode. In another embodiment, the controller also provides a constant voltage control signal.
摘要:
Foreign materials (contaminants) will usually affect many other properties of the surface as well as affecting the adhesion. This allows the use of indirect or off-contact measurement of surface energy to evaluate the quality of the surface. Our approach is environmentally friendly, uses no consumables and is totally benign to the surfaces being bonded. In order to detect contaminants on a substrate, the optical reflectivity properties of the materials can be compared. Metals and composites have different reflectivity than organics, which have low reflectivity (i.e. high absorption). This can usually be seen in white light by using a selected part of the light spectrum to enhance visual contrast between the two materials. This is because the reflectivity of a material changes with the wavelength of light. UV light can cause fluorescence of a few materials but this limits performance for a versatile machine. Extending the range from UV through the visible spectrum to IR gives a greater opportunity to find a frequency band where the reflectivity of the contaminant and the substrate are furthest apart for maximum contrast and sensitivity. By electronically enhancing these differences in the image through custom software, we can increase the sensitivity range even further. Thus UV/Vis./IR instruments can locate the contaminants but cannot identify them. A second technique such as a Mass Spectrometer can be used to identify and quantify the contaminant, the system uses a an ion mobility mass spectrometer (IMMS) to analyze and identify the contaminants evolved from a surface. The contaminants are released from the surface by local heating such as an IR laser or decomposed by a UV laser drawn into the IMMS and identified. These instruments can perform this identification separately or it may be combined in a hand-held spectroscope for this purpose. By using at least two types of illumination and filtering conditions and to add or subtract the images through software, we can pick out characteristic signatures for contaminants such as silicone.