摘要:
A device for discovering, identification and monitoring, of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The device can determine the position of the defect or stress including depth information. The device includes registration means that optimized for use with metallic structures of various types, shapes, and sizes. Applications include a real-time quality control, monitoring and emergency alarms, as well structural repairs and maintenance work recommendations and planning. Examples of the device implementation include pipes for oil and gas industry monitoring, detection of flaws in roiled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs, bridges, etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
摘要:
A device for discovering, identification and monitoring of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The device includes registration means that optimized for use with metallic structures of various types, shapes and sizes. Applications include a real-time quality control, monitoring and emergency alarms, as well structural repairs and maintenance work recommendations and planning. Examples of the device implementation include pipes for oil and gas industry monitoring, detection of flaws in rolled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs. etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
摘要:
A device and method for discovering, identification and monitoring of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The technique is specifically optimized for extended, not-accessible underground and underwater metallic structures quality control, emergency alarms as well as timeline planning for structural repairs and maintenance work. Examples of the technique implementation include pipes for oil and gas industry, detection of flaws in rolled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs, etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
摘要:
A method for discovering, identifying, and monitoring of mechanical defects in a ferromagnetic underground or underwater structure. A magnetic scanner portable device is used to inspect the ferromagnetic underground structure and identify at least one portion with a magnetic field anomaly. Sets of permanent magnetic scanner sensors to monitor the magnetic field anomaly are placed adjacent to the at least one portion of the underground structure. A calculation unit, coupled to the sets of permanent magnetic scanner sensors is used to collect and process data. A stress-deformed state (SDS) and a risk-factor (RF) of the at least one portion with the magnetic field anomaly is presented on a display unit, which is coupled to the calculation unit.
摘要:
A device for discovering, identification and monitoring, of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The device can determine the position of the defect or stress including depth information. The device includes registration means that optimized for use with metallic structures of various types, shapes and sizes. Applications include a real-time quality control, monitoring and emergency alarms, as well structural repairs and maintenance work recommendations and planning. Examples of the device implementation include pipes for oil and gas industry monitoring, detection of flaws in rolled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs. etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
摘要:
A method for discovering, identifying, and monitoring of mechanical defects in a ferromagnetic underground or underwater structure. A magnetic scanner portable device is used to inspect the ferromagnetic underground structure and identify at least one portion with a magnetic field anomaly. Sets of permanent magnetic scanner sensors to monitor the magnetic field anomaly are placed adjacent to the at least one portion of the underground structure. A calculation unit, coupled to the sets of permanent magnetic scanner sensors is used to collect and process data. A stress-deformed state (SDS) and a risk-factor (RF) of the at least one portion with the magnetic field anomaly is presented on a display unit, which is coupled to the calculation unit.
摘要:
A method for metallic structure maintenance is disclosed. The method includes a magneto-graphic/Magnetic Tomography technique to identify stress-related defects. The method is specifically optimized for extended, non-accessible underground and underwater metallic structures in providing quality control, emergency alarms as well as timeline planning for structural repairs and maintenance work. Examples of the method implementation include pipes for oil and gas industry, detection of flaws in rolled products in metallurgical industry, welding quality of heavy duty equipment such as ships reservoirs, etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
摘要:
A device for discovering, identification and monitoring, of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The device can determine the position of the defect or stress including depth information. The device includes registration means that optimized for use with metallic structures of various types, shapes, and sizes. Applications include a real-time quality control, monitoring and emergency alarms, as well structural repairs and maintenance work recommendations and planning. Examples of the device implementation include pipes for oil and gas industry monitoring, detection of flaws in roiled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs, bridges, etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
摘要:
A device for discovering, identification and monitoring, of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The device includes registration means that optimized for use with metallic structures of various types, shapes and sizes. Applications include a real-time quality control, monitoring and emergency alarms, as well structural repairs and maintenance work recommendations and planning. Examples of the device implementation include pipes for oil and gas industry monitoring, detection of flaws in rolled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs. etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
摘要:
The present invention is directed to a system and a method for inspecting a subsea pipeline. The method comprises the steps: detecting a defect along the subsea pipeline using a subsea magnetometric tomography method (MTM) module adjacent the subsea pipeline; and determining a position of the subsea MTM module, thereby determining the position of the defect. The method further comprises determining the position of the subsea MTM module relative to a surface vessel; and determining an absolute position of the surface vessel.