Abstract:
Nano-electromechanical systems (NEMS) devices that utilize thin electrically conductive membranes, which can be, for example, graphene membranes. The membrane-based NEMS devices can be used as sensors, electrical relays, adjustable angle mirror devices, variable impedance devices, and devices performing other functions. The NEMS devices have a serpentine shape arrangement of the electrically conductive membrane. The electrically conductive membrane can be controllably wicked down on the edge of the oxide cavity to increase sensitivity of the NEMS device.
Abstract:
A magnetometer comprising a resonating structure which is naturally resonant in at least three resonant modes, a resonant frequency of the three modes being sufficiently separated to allow of detection of same, the resonating structure having two sense electrodes disposed on opposing major surfaces of the resonating structure and having a conductive path formed as a loop, the loop being disposed near or at edges of the resonating structure and the two sense electrodes being formed inwardly of the edges of the resonating structure and also inwardly of the loop.
Abstract:
Disclosed is a resonant magnetic field sensor, comprising a detector structure including a mass block and displacement detection electrodes; capacitance to voltage converter and amplifier to convert detection signals of the detection electrodes into voltage signals, as output signals of the magnetic field sensor; and a vibration driving circuit to provide the output signals to the mass block in the form of a current, to drive the mass block to vibrate. The vibration driving circuit may be a comparator.
Abstract:
Various exemplary embodiments relate to a magnetometer device to measure oscillation frequency, including a feedthrough loop including an amplifier and a voltage bias connected to a first input of a metallic membrane; a membrane ground connected to a membrane output; a fixed plate including a first fixed plate output connected to a second input of the amplifier, wherein the fixed plate is physically separated from the metallic membrane but connected to the metallic membrane by a Lorentz force, and where the physical separation differs due to an angle of a magnetic field relative to a direction of a current; a second fixed plate output sensitive to the Lorentz force; and a circuit connected to the second fixed plate output to calculate an angle of the magnetic force based upon the Lorentz force.
Abstract:
Systems and methods are disclosed for predicting a future orientation of a device. A future motion sensor sample may be predicted using a plurality of motion sensor samples for the device up to a current time. After determining the current orientation of the device, the predicted motion sensor sample may be used to predict a future orientation of the device at one or more times.
Abstract:
A sensor system is formed from a micro machined resonant structure with multiple resonant elements, a tracking resonator control electronics, and signal processing algorithms. The moving elements of the resonator are coated with chemically active materials that change mass when exposed to the target chemical resulting in a change in frequency or period of oscillation. The changes in frequency or period are processed by multi-sensor chemical detection algorithms to identify chemical types and concentrations. In essence, the resonator and drive electronics form a closed loop oscillator operating at the resonator's natural frequency. The resonators are formed from silicon using photolithographic processes. The resonator design includes in-plane resonant motion combined with dynamic balance to operate with a high Q even in the presence of atmospheric pressure.
Abstract:
A MEMS sensor according to the present invention includes a base substrate including a displaceably supported movable portion and a lid substrate covering the movable portion and functioning as a magnetic sensor that detects magnetism by making use of the Hall effect.
Abstract:
A micromachined magnetic field sensor is disclosed. The micromachined magnetic field comprises a substrate; a drive subsystem, the drive subsystem comprises a plurality of beams, and at least one anchor connected to the substrate; a mechanism for providing an electrical current through the drive subsystem along a first axis; and Lorentz force acting on the drive subsystem along a second axis in response to a magnetic field along a third axis. The micromachined magnetic field sensor also includes a sense subsystem, the sense subsystem includes a plurality of beams, and at least one anchor connected to the substrate; wherein a portion of the sense subsystem moves along a fourth axis; a coupling spring between the drive subsystem and the sense subsystem which causes motion of the sense subsystem in response to the magnetic field; and a position transducer to detect the motion of the sense subsystem.
Abstract:
A gradient sensor of a component of a magnetic field comprising at least one elementary sensor comprising a deformable mass (31) equipped with a permanent magnet (32) having a magnetization direction substantially colinear to the direction of the gradient of the component of the magnetic field to be acquired by the sensor. The deformable mass (31) is able to deform under the effect of a force exerted on the magnet by the gradient, the effect of this force being to shift it, by dragging the deformable mass (31), in a direction substantially colinear to the component of the magnetic field for which the sensor has to acquire the gradient. The deformable mass (31) is anchored to a fixed support device (33) in at least two anchoring points (36) substantially opposite relative to the mass (31). The elementary sensor also comprises measuring means (35, 35.1, 35.2, 35.3) of at least one electric variable translating deformation or stress of the deformable mass (31) engendered by the gradient.
Abstract:
A two-axes MEMS magnetometer includes, in one plane, a freestanding rectangular frame having inner walls and four torsion springs, wherein opposing inner walls of the frame are contacted by one end of only two torsion springs, each torsion spring being anchored by its other end, towards the centre of the frame, to a substrate. In operation, the magnetometer measures the magnetic field in two orthogonal sensing modes using differential capacitance measurements.