摘要:
Disclosed is a thin film transistor liquid crystal display capable of fast operation and having enhanced display quality. The thin film transistor liquid crystal display comprises a transparent insulating substrate; gate lines and storage lines arranged on the transparent insulating substrate in rows parallel to each other alternatively; data lines arranged in columns perpendicular to the gate lines and the storage lines so as to define pixel areas; a first pixel area defined by a pair of gate lines and a pair of data lines, and a second pixel area defined by a pair of storage lines and a pair of data lines; and a first thin film transistor disposed adjacent to an intersection of the gate line and the data line and in contact with the first pixel electrode on an upper position, and a second thin film transistor disposed adjacent to an intersection of the storage line and the data line and in contact with the second pixel electrode on a lower position.
摘要:
In a liquid crystal display having an upper substrate and a lower substrate opposite thereto, a liquid crystal molecules interposed therebetween, a gate bus and data bus line arranged in a first direction and the second direction respectively on the lower substrate, thus defining a space for an unit cell of the liquid crystal display, a channel layer at the intersection of the gate bus line and the data bus line, a counter electrode and a pixel electrode for operating the liquid crystal molecules disposed at unit cell and an insulating layer for isolating the gate bus line from the data bus line, the part of the counter electrode and the part of the pixel electrode by which the electric field parallel to the gate bus line are located in the space for unit cell and has sectional view of a substantial triangle shape. Accordingly, an equi-potential area in which liquid crystal molecules do not operate over the counter electrode and the pixel electrode is minimized, thus improving an aperture ratio and a transmittance of the LCD.
摘要:
A liquid crystal display, comprising: a plurality of gate lines being spaced in a selected distance; a plurality of data lines being spaced in a selected distance, the data lines where a data line driving signal is provided being crossed with the gate lines to define a plurality of R, G and B pixel regions, each of data lines being split into a pair of data lines; a plurality of R, G and B dots disposed in the R, G, and B pixel regions, respectively; and a plurality of switching devices disposed in the R, G, B pixel regions, each being connected to corresponding gate line and data line of a plurality of gate lines and data lines; wherein by the split data lines, each of the R, G and B pixel regions is divided into a plurality of R, G and B sub pixel regions; and each of the R, G and B dots includes a plurality of R, G and B subdots, each of R, G and B subdots being disposed in each of R, G and B sub pixel regions, respectively.
摘要:
A TFT-LCD comprising: a plurality of data lines being spaced with each other; a plurality of gate lines being spaced with each other and being crossed with the gate lines; and a plurality of TFTs; wherein TFTs of the plurality of TFTs which are connected to odd data lines of the plurality of data lines, are disposed in the upside of the gate lines and the TFTs of the plurality of TFTs which are connected to the even data lines of the plurality of data lines, are disposed on the downside of the gate lines, thereby being disposed with a zig-zag form; and wherein data signals having different polarities are respectively applied to the data lines corresponding to the odd gate lines of the plurality of gate lines and to the data lines corresponding to the even gate lines of the plurality of gate lines, thereby applying the data signals having different polarities between adjacent two pixels.
摘要:
A method for manufacturing a fringe field switching mode liquid crystal display device which can improve productivity by reducing the number of steps in the manufacturing process. In this improved method of manufacture, the gate bus line is formed having a stacked structure of a transparent metal layer and an opaque metal layer. In the formation of the gate bus line, the counter electrode is firstly formed, and the active region is formed to cover the gate bus line. Thereafter, the counter electrode is formed by removing the opaque metal layer on the exposed surface of the counter electrode structure. By this method, the gate bus line and the counter electrode structure are formed at the same time thereby reducing the number of mask processes from six, as required by using the conventional manufacturing method, to five.
摘要:
A liquid crystal display, comprising: a plurality of gate lines being spaced in a selected distance; a plurality of data lines being spaced in a selected distance, the data lines where a data line driving signal is provided being crossed with the gate lines to define a plurality of R, G and B pixel regions, each of data lines being split into a pair of data lines; a plurality of R, G and B dots disposed in the R, G, and B pixel regions, respectively; and a plurality of switching devices disposed in the R, G, B pixel regions, each being connected to corresponding gate line and data line of a plurality of gate lines and data lines; wherein by the split data lines, each of the R, G and B pixel regions is divided into a plurality of R, G and B sub pixel regions; and each of the R, G and B dots includes a plurality of R, G and B subdots, each of R, G and B subdots being disposed in each of R, G and B sub pixel regions, respectively.
摘要:
A liquid crystal display device that includes a storage capacitor having a capacitor electrode for storing voltage applied to a pixel electrode for a constant period of time, is disclosed. The device includes: a plurality of data lines arranged in parallel over an insulation glass substrate; a plurality of gate lines arranged in parallel over the insulation glass, gate lines being crossed with the data lines to define a plurality of pixel regions; a plurality of the pixel electrodes formed at the pixel regions, respectively; a plurality of TFTs formed at the cross points of the data lines and the gate lines, and each TFT is connected to each data line and each pixel electrode, respectively; and a plurality of opaque layers formed on the insulation glass substrate 40, each light shielding layer consisting of a body and a plurality of protrusions, and the body being elongated along each data line and overlapped with the portions of pixel electrodes and each protrusion protruded from the body to each TFT.