Abstract:
A robot cleaner system is described including a docking station to form a docking area within a predetermined angle range of a front side thereof, to form docking guide areas which do not overlap each other on the left and right sides of the docking area, and to transmit a docking guide signal such that the docking guide areas are distinguished as a first docking guide area and a second docking guide area according to an arrival distance of the docking guide signal. The robot cleaner system also includes a robot cleaner to move to the docking area along a boundary between the first docking guide area and the second docking guide area when the docking guide signal is sensed and to move along the docking area so as to perform docking when reaching the docking area.
Abstract:
A robot cleaner that cleans a cleaning region while traveling the cleaning region and a method to control the same are provided. The robot cleaner can uniformly clean a cleaning region based on a wall-following technique which allows the robot cleaner to travel along the outline of the cleaning region. The method selects, as a reference wall, a wall at a left or right side of the robot cleaner at a start position of the robot cleaner based on a left or right-based travel algorithm, which allows the robot cleaner to travel along a left or right wall, and controls the robot cleaner to travel the cleaning region in a zigzag travel pattern in which the robot cleaner moves a predetermined distance in a direction perpendicular to the reference wall at specific intervals along the selected reference wall while following the selected reference wall.
Abstract:
A cleaning apparatus including a main body, a dust collection unit detachably installed on the main body and provided with a plurality of inlets, through which foreign substances are introduced into the dust collection unit, and a connection hole, to which an external instrument is connected, a shutter to open and close one inlet, and a cap to open and close the connection hole. The shutter opens and closes the inlet in cooperation with one of whether or not the dust collection unit is attached to or detached from the main body and whether or not the connection hole is opened or closed.
Abstract:
A moving robot includes a sensing system. The moving robot includes light sources generating light, an optical guide to receive, diffuse, and emit the light generated from the light source, and light receiving sensors to receive the light emitted from the optical guide and then reflected by the object. Light irradiated from the light sources is diffused and emitted to a wide region through the optical guide, thereby allowing light to be emitted to the wide region with a small number of the light sources.
Abstract:
A robot cleaner system is described including a docking station to form a docking area within a predetermined angle range of a front side thereof, to form docking guide areas which do not overlap each other on the left and right sides of the docking area, and to transmit a docking guide signal such that the docking guide areas are distinguished as a first docking guide area and a second docking guide area according to an arrival distance of the docking guide signal. The robot cleaner system also includes a robot cleaner to move to the docking area along a boundary between the first docking guide area and the second docking guide area when the docking guide signal is sensed and to move along the docking area so as to perform docking when reaching the docking area.
Abstract:
A robot cleaner system is described including a docking station to form a docking area within a predetermined angle range of a front side thereof, to form docking guide areas which do not overlap each other on the left and right sides of the docking area, and to transmit a docking guide signal such that the docking guide areas are distinguished as a first docking guide area and a second docking guide area according to an arrival distance of the docking guide signal. The robot cleaner system also includes a robot cleaner to move to the docking area along a boundary between the first docking guide area and the second docking guide area when the docking guide signal is sensed and to move along the docking area so as to perform docking when reaching the docking area.
Abstract:
A robot cleaning system and a dust removing method of the same that are capable of moving a first dust collector mounted in a robot cleaner to a docking station to remove dust collected in the first dust collector. The robot cleaning system includes a robot cleaner having an opening, though which a first dust collector to collect suctioned dust is carried in and out of the robot cleaner, a docking station, to which the robot cleaner is docked to remove the dust collected in the first dust collector, and a collector moving unit to move the first dust collector to the docking station.
Abstract:
Disclosed herein are a mobile robot system to restrict a traveling region of a robot and to guide the robot to another region, and a method of controlling the same. Only when a remote controller reception module of a beacon senses a signal transmitted from a mobile robot, the sensed result is reported to the mobile robot in the form of a response signal. In addition, the Field-of-View (FOV) of the remote control reception module is restricted by a directivity receiver. Only when the signal transmitted from the mobile robot is sensed within the restricted FOV, the sensed result is reported to the mobile robot.
Abstract:
Disclosed herein is a localization system and method to recognize the location of an autonomous mobile platform. In order to recognize the location of the autonomous mobile platform, a beacon (three-dimensional structure) having a recognizable image pattern is disposed at a location desired by a user, the mobile platform which knows image pattern information of the beacon photographs the image of the beacon and finds and analyzes a pattern to be recognized from the photographed image. A relative distance and a relative angle of the mobile platform are computed using the analysis of the pattern such that the location of the mobile platform is accurately recognized.
Abstract:
A cleaner system having an improved connecting position and structure between a robot cleaner and a docking station for achieving an improvement in dust removal performance of the docking station. The docking station performs manual cleaning. The robot cleaner has a dust outlet at a top wall of the robot body to discharge the dust collected in the first dust collector into the docking station, and the docking station has a connection port at a position thereof corresponding to the dust outlet to receive the dust discharged from the dust outlet. The robot cleaner or docking station includes a connector to connect the dust outlet to the connection port. The docking station includes a suction part, suction pipe, and suction hole for manual operation. A channel switching member is mounted in the docking station to selectively apply power required to suck dust to the connection port or suction hole.