Abstract:
Provided are a method and device for separating and converting multiband signals. The device includes a photoelectric converter for converting an externally received optical signal into an electrical signal, a first switch for separating the converted electrical signal into signals according to frequency bands, a first mobile communication band-pass amplifier for amplifying a mobile communication network signal of the signals separated by the first switch, a broadband up-converter for up-converting a baseband signal of the signals separated by the first switch into a broadband signal, a first broadband amplifier for amplifying the broadband signal output from the broadband up-converter, and a transmitter for wirelessly transmitting the signals amplified by the first mobile communication band-pass amplifier and the first broadband amplifier.
Abstract:
Disclosed is a system of a dynamic range three-dimensional image, including: an optical detector including a gain control terminal capable of controlling an optical amplification gain; a pixel detecting module for detecting a pixel signal for configuring an image by receiving an output of the optical detector; a high dynamic range (HDR) generating module for acquiring a dynamic range image by generating a signal indicating a saturation degree of the pixel signal and combining the pixel signal based on the pixel signal detected by the pixel detecting module; and a gain control signal generating module generating an output signal for supplying required voltage to the gain control terminal of the optical detector based on the magnitude of the signal indicating the saturation degree of the pixel signal.
Abstract:
Provided are an optical receiver and a method of forming the same. The optical receiver includes a lens, a photo detector, and a hetero-junction bipolar transistor. The lens is attached to a backside of a substrate. The photo detector is disposed on a top surface of the substrate. The hetero-junction bipolar transistor is disposed on the top surface of the substrate. The lens condenses an incident optical signal to transmit the condensed optical signal to the photo detector.
Abstract:
Provided is a photo detector. The photo detector includes: an avalanche photodiode; a bias circuit supplying a bias voltage to one end of the avalanche photodiode; a detection circuit connected to the other end of the avalanche photodiode and detecting a photoelectric current occurring in the avalanche photodiode; and a coupling capacitor connected to the one end or the other end of the avalanche photodiode and supplying a coupling voltage to drive the avalanche photodiode in a Geiger mode.
Abstract:
An image sensor with a shared photodiode is provided. The image sensor includes at least two unit pixels, each of which includes a photodiode, a diffusion region which gathers electrons from the photodiode, a transfer transistor which connects the photodiode with the diffusion region, and a readout circuit which reads out a signal from the diffusion region. Photodiodes of neighboring unit pixels are disposed symmetrically to be adjacent to one another to form a shared photodiode. The image sensor does not have a STI region which causes a dark current restricting its performance and does not require a basic minimum design factor (a distance or an area) related to a STI region. A region corresponding to a STI region may be used as a region of a photodiode or for additional pixel scaling. Therefore, a limitation in scaling of a photodiode is overcome, and pixel performance is improved in spite of pixel scaling.
Abstract:
Provided are a method and device for separating and converting multiband signals. The device includes a photoelectric converter for converting an externally received optical signal into an electrical signal, a first switch for separating the converted electrical signal into signals according to frequency bands, a first mobile communication band-pass amplifier for amplifying a mobile communication network signal of the signals separated by the first switch, a broadband up-converter for up-converting a baseband signal of the signals separated by the first switch into a broadband signal, a first broadband amplifier for amplifying the broadband signal output from the broadband up-converter, and a transmitter for wirelessly transmitting the signals amplified by the first mobile communication band-pass amplifier and the first broadband amplifier.
Abstract:
Provided are an optical receiver and a method of forming the same. The optical receiver includes a lens, a photo detector, and a hetero-junction bipolar transistor. The lens is attached to a backside of a substrate. The photo detector is disposed on a top surface of the substrate. The hetero-junction bipolar transistor is disposed on the top surface of the substrate. The lens condenses an incident optical signal to transmit the condensed optical signal to the photo detector.
Abstract:
Provided is an avalanche photodetector with an integrated micro lens. The avalanche photodetector includes a light absorbing layer on a semiconductor substrate, an amplification layer on the light absorbing layer, a diffusion layer within the amplification layer, and the micro lens disposed corresponding to the diffusion layer. The micro lens includes a first refractive layer and a second refractive layer having a refractive index less than that of the first refractive layer.
Abstract:
Provided is a photo detector. The photo detector includes: an avalanche photodiode; a bias circuit supplying a bias voltage to one end of the avalanche photodiode; a detection circuit connected to the other end of the avalanche photodiode and detecting a photoelectric current occurring in the avalanche photodiode; and a coupling capacitor connected to the one end or the other end of the avalanche photodiode and supplying a coupling voltage to drive the avalanche photodiode in a Geiger mode.
Abstract:
Provided is a method of forming a compound semiconductor device. In the method, a dopant element layer is formed on an undoped compound semiconductor layer. An annealing process is performed to diffuse dopants in the dopant element layer into the undoped compound semiconductor layer, thereby forming a dopant diffusion region. A rapid cooling process is performed using liquid nitrogen with respect to the substrate having the dopant diffusion region.