摘要:
Novel adsorbents and their use in a process for the removal of sulfur compounds from distillate fuels are described herein. The novel adsorbents are comprised of nanocrystals of Ni having adsorbed on their surface phosphorus and/or phosphine species, which nanocrystals can be distributed in a micro-/meso-porous support material.
摘要:
Disclosed is a process for catalytically reforming a gasoline boiling range hydrocarbonaceous feedstock wherein the reforming is conducted in two or more stages wherein each stage is separated from another stage by aromatics removal from the reaction stream of a preceding stage. The resulting aromatics-lean stream is passed to a downstream reforming stage.
摘要:
The present invention provides a high capacity adsorbent for removing sulfur from hydrocarbon streams. The adsorbent comprises a composite material containing particles of a nickel phosphide complex NixP. The adsorbent is utilized in a sulfur removal process that does not require added hydrogen, and run at relatively low temperatures ranging from about 150° C. to about 400° C. The process of this invention enables “ultra-deep” desulfurization down to levels of about 1 ppm and less.
摘要:
The present invention is an adsorbent for removing sulfur from hydrocarbon streams. The adsorbent includes nickel particles distributed in a phase containing silica and alumina.
摘要:
Novel adsorbents and their use in a process for the removal of sulfur compounds from distillate fuels are described herein. The novel adsorbents are comprised of nanocrystals of Ni having adsorbed on their surface phosphorus and/or phosphine species, which nanocrystals can be distributed in a micro-/meso-porous support material.
摘要:
The present invention provides a high capacity adsorbent for removing sulfur from hydrocarbon streams. The adsorbent comprises a composite material containing particles of a nickel phosphide complex NixP. The adsorbent is utilized in a sulfur removal process that does not require added hydrogen, and run at relatively low temperatures ranging from about 150° C. to about 400° C. The process of this invention enables “ultra-deep” desulfurization down to levels of about 1 ppm and less.
摘要:
A process for catalytically reforming a gasoline boiling range hydrocarbonaceous feedstock wherein the reforming is conducted in two or more stages wherein each stage is separated from another stage by aromatics removal from the reaction stream of a preceding stage. Reforming in at least one of the downstream reactors is conducted in the presence of a catalyst comprised of a nobel metal, an inorganic support, and a promotor metal; or a catalyst comprised of a Group VIII metal on a type-X, type-Y, or type-L zeolitic support.