Abstract:
The invention describes the process by which a standard mixture of organic compounds are spiked and retained onto a composite sorbent matrix for the controlled generation of a standard in fluid above the spiked matrix either in gas (headspace) or aqueous phase which is contained in portable vials. The novelty of the aforementioned composite matrix stems from the combination of an immobilizing liquid phase such as silicone oil or a polyacrylonitrile solution, and solid, porous particles such as polystyrene-co-divinylbenzene (PS-DVB) or Hydrophilic/Lipophilic Balance (HLB) particles to strongly retain the spiked standards facilitating high capacity which translates into prolonged use as a source of calibrant. These novel composite mixtures exhibit sorptive capabilities greater than the sum of their individual components producing a standard analyte generator far superior to those described in the prior art. In addition swelling of the particles with the liquid phase facilitates immobilization of the composite sorbent matrix in the vial. Immobilization of said particles has also been achieved by cross-linking of a liquid polymeric solution such as polydimethylsiloxane (PDMS), allowing the composite sorbent matrix to be uniformly distributed on the vessel wall. With thermodynamic equilibrium strongly favoring the sorbent phase for a wide range of chemical compounds, this invention allows for the reproducible generation of an ultra-low concentration standard analyte mixture in fluid. If the fluid is gaseous, extractions from this headspace can be performed via solid phase microextraction (SPME), needle trap devices (NTD), or direct headspace extraction for injection onto various hyphenated gas chromatography (GC) systems. If the fluid is aqueous, extractions may be performed directly from the standard water for injection onto hyphenated GC or liquid chromatography (LC) systems. The invention can be used for a variety of applications ranging from integrated GC-MS or LC-MS tuning, automated instrument quality control (QC), preparation of reusable external calibration mixtures and, addition of internal standards wherein the method provides long-term stability, inter-batch reproducibility, repeatable analyte loading of the fluid, and quantifiable low concentrations at given temperatures.
Abstract:
Various entities need to share data among team members working on the same project without investing in specialized server software. To address this need, an existing standard file server is used to host data for sharing among the team. The file server has not been customized to share the data for the particular application. A user creates a special folder for a project at a user specified location on the file server. Data associated with the project is converted to files and stored in a structure of folders used by the file server to represent the data that is shared. Each client that has subscribed to this shared data synchronizes the data on their local computing device with the data on the file server. Security is provided by using the file server's built-in access controls.
Abstract:
Described is a system and method that enables project management across application programs, including an email program, calendar program, spreadsheet program, word processing program, note taking program and others. A central project-related view provides access to project-related data items and may display a schedule, a task list of tasks filtered as being relevant to a project, a note page related to a project, and emails relevant to the project. In addition, other application objects (file, documents, presentations and spreadsheets) are also captured in the view and presented for easy access. Metadata including a project identifier is maintained in a database for the various data items, allowing rapid location of the data items related to a project via query techniques. A project palette allows access to the items from within another application program, and a project gallery allows a user alternative access to the files related to a project.
Abstract:
The invention describes the process by which a standard mixture of organic compounds are spiked and retained onto a composite sorbent matrix for the controlled generation of a standard in fluid above the spiked matrix either in a gaseous or aqueous phase. The novelty of the aforementioned composite matrix stems from the combination of an immobilizing liquid phase such as silicone oil or a polyacrylonitrile solution, and solid, porous particles such as polystyrene-co-divinylbenzene (PS-DVB) or hydrophilic/Lipophilic Balance (HLB) particles to strongly retain the spiked standards. These novel composite mixtures exhibit sorptive capabilities greater than the sum of their individual components. In addition swelling of the particles with the liquid phase facilitates immobilization of the composite sorbent matrix in the vial. With thermodynamic equilibrium strongly favoring the sorbent phase for a wide range of chemical compounds, this invention allows for the reproducible generation of an ultra-low concentration standard analyte mixture in fluid.