Abstract:
A chemical detector for rapid, simultaneous detection of multiple chemicals including chemical warfare agents, toxic industrial chemicals, and explosives having one or more gas chromatography columns each with a chemosorbent or a chemo-reactive stationary phase and an infrared-transparent base, a bright infrared light source, a mechanism to direct the light source to any point along any of the columns, and an infrared sensor. Another disclosed detector has one or more gas chromatography columns each on the surface of a substrate having at least one infrared-transparent waveguide pattern, a bright infrared light source, and at least one ring resonator for each column, where each ring resonator is coated with a chemosorbent or a chemo-reactive stationary phase, and where each ring resonator spectroscopically probes the stationary phase. Also disclosed are the related methods for chemical detection.
Abstract:
A conductivity detector includes a flow channel, an electrode arrangement, and a detector. The flow channel has a tube shape with a channel diameter through which a solution including ion components flows. The electrode arrangement is on the flow channel and includes at least an anode and at least a cathode. The anode and cathode are spaced apart by an electrode gap less than or equal to the channel diameter. The detector is connected to the electrode arrangement to detect electrical conductivity of the ion components.
Abstract:
A chemical detector for rapid, simultaneous detection of multiple chemicals including chemical warfare agents, toxic industrial chemicals, and explosives having one or more gas chromatography columns each with a chemosorbent or a chemo-reactive stationary phase and an infrared-transparent base, a bright infrared light source, a mechanism to direct the light source to any point along any of the columns, and an infrared sensor. Another disclosed detector has one or more gas chromatography columns each on the surface of a substrate having at least one infrared-transparent waveguide pattern, a bright infrared light source, and at least one ring resonator for each column, where each ring resonator is coated with a chemosorbent or a chemo-reactive stationary phase, and where each ring resonator spectroscopically probes the stationary phase. Also disclosed are the related methods for chemical detection.
Abstract:
The invention describes the process by which a standard mixture of organic compounds are spiked and retained onto a composite sorbent matrix for the controlled generation of a standard in fluid above the spiked matrix either in gas (headspace) or aqueous phase which is contained in portable vials. The novelty of the aforementioned composite matrix stems from the combination of an immobilizing liquid phase such as silicone oil or a polyacrylonitrile solution, and solid, porous particles such as polystyrene-co-divinylbenzene (PS-DVB) or Hydrophilic/Lipophilic Balance (HLB) particles to strongly retain the spiked standards facilitating high capacity which translates into prolonged use as a source of calibrant. These novel composite mixtures exhibit sorptive capabilities greater than the sum of their individual components producing a standard analyte generator far superior to those described in the prior art. In addition swelling of the particles with the liquid phase facilitates immobilization of the composite sorbent matrix in the vial. Immobilization of said particles has also been achieved by cross-linking of a liquid polymeric solution such as polydimethylsiloxane (PDMS), allowing the composite sorbent matrix to be uniformly distributed on the vessel wall. With thermodynamic equilibrium strongly favoring the sorbent phase for a wide range of chemical compounds, this invention allows for the reproducible generation of an ultra-low concentration standard analyte mixture in fluid. If the fluid is gaseous, extractions from this headspace can be performed via solid phase microextraction (SPME), needle trap devices (NTD), or direct headspace extraction for injection onto various hyphenated gas chromatography (GC) systems. If the fluid is aqueous, extractions may be performed directly from the standard water for injection onto hyphenated GC or liquid chromatography (LC) systems. The invention can be used for a variety of applications ranging from integrated GC-MS or LC-MS tuning, automated instrument quality control (QC), preparation of reusable external calibration mixtures and, addition of internal standards wherein the method provides long-term stability, inter-batch reproducibility, repeatable analyte loading of the fluid, and quantifiable low concentrations at given temperatures.
Abstract:
An aflatoxin M1 nanobody, an immunosorbent and an immunoaffinity column. The aflatoxin M1 nanobody 2014AFM-G2 has the amino acid sequence of SEQ ID NO:7, is encoded by the nucleic acid sequence of SEQ IDNO:8, has a 50% inhibiting concentration IC50 to aflatoxin M1 of 0.208 ng/mL, and has cross reaction rates with aflatoxins B1, B2, G1, and G2 of 9.43%, 5.93%, 4.87% and 6.17%, respectively. The immunosorbent includes a solid phase carrier and aflatoxin M1 nanobody 2014AFM-G2 coupled with the solid phase carrier. The immunoaffinity column is loaded with the aflatoxin M1 nanobody immunosorbent. It can be used for purifying and concentrating an extracting solution of a sample before loading to a machine for detection and the immunoaffinity column can be used repeatedly for many times.
Abstract translation:黄曲霉毒素M1纳米体,免疫吸附剂和免疫亲和柱。 黄曲霉毒素M1纳米粒子2014AFM-G2具有SEQ ID NO:7的氨基酸序列,由SEQ ID NO:8的核酸序列编码,对黄曲霉毒素M1的IC50值为0.208ng / mL,具有50%的抑制浓度,具有 黄曲霉毒素B1,B2,G1和G2的交叉反应率分别为9.43%,5.93%,4.87%和6.17%。 免疫吸附剂包括与固相载体偶联的固相载体和黄曲霉毒素M1纳米颗粒。 免疫亲和柱装载有黄曲霉毒素M1纳米体免疫吸附剂。 它可以用于在加载到机器进行检测之前将样品的提取溶液进行纯化和浓缩,并且免疫亲和柱可以重复使用多次。
Abstract:
Described is an affinity microcolumn comprising a high surface area material, which has high flow properties and a low dead volume, contained within a housing and having affinity reagents bound to the surface of the high surface area material that are either activated or activatable. The affinity reagents bound to the surface of the affinity microcolumn further comprise affinity receptors for the integration into high throughput analysis of biomolecules.
Abstract:
The present invention aims to provide a method of measuring hemoglobins which can measure hemoglobins in a short time at high accuracy. The present invention also aims to provide a method of measuring hemoglobin A1c, a method of simultaneously measuring hemoglobin A1c and hemoglobin F, a method of simultaneously measuring hemoglobin A1c and hemoglobin A2, and a method of simultaneously measuring hemoglobin A1c and abnormal hemoglobins, each utilizing the above-mentioned method of measuring hemoglobins by liquid chromatography. The present invention relates to a method of measuring hemoglobins by liquid chromatography. A column used in the method is filled with, as a column-packing material, cation-exchangeable particles including cross-linked polymer particles having a cation-exchange-group-containing polymer bonded to the surface of the cross-linked polymer particles, and the column shows a pressure value of 9.8×103 Pa or higher and 29.4×105 Pa or lower when an eluent for measurement is delivered at 1.0 mL/min.
Abstract:
Described is an affinity microcolumn comprising a high surface area material, which has high flow properties and a low dead volume, contained within a housing and having affinity reagents bound to the surface of the high surface area material that are either activated or activatable. The affinity reagents bound to the surface of the affinity microcolumn further comprise affinity receptors for the integration into high throughput analysis of biomolecules.
Abstract:
Described is an affinity microcolumn comprising a high surface area material, which has high flow properties and a low dead volume, contained within a housing and having affinity reagents bound to the surface of the high surface area material that are either activated or activatable. The affinity reagents bound to the surface of the affinity microcolumn further comprise affinity receptors for the integration into high throughput analysis of biomolecules.
Abstract:
Described is an affinity microcolumn comprising a high surface area material, which has high flow properties and a low dead volume, contained within a housing and having affinity reagents bound to the surface of the high surface area material that are either activated or activatable. The affinity reagents bound to the surface of the affinity microcolumn further comprise affinity receptors for the integration into high throughput analysis of biomolecules.