摘要:
In various exemplary embodiments, the present invention provides systems and methods that can convert clean or raw natural gas, clean or dirty coke oven gas, or the like to reducing gas/syngas suitable for direct reduction with minimal processing or cleaning. Hydrocarbons and the like are converted to H2 and CO. S does not affect the conversion to reducing gas/syngas, but is removed or otherwise cleaned up by the iron bed in the direct reduction shaft furnace. Top gas may be continuously recycled or a once-through approach may be employed.
摘要:
A method and apparatus for sequestering carbon dioxide from a waste gas and reusing it as a recycled gas without emissions concerns, including: given a gas source divided into a process gas and a waste gas: mixing the process gas with a hydrocarbon and feeding a resulting feed gas into a reformer for reforming the feed gas and forming a reducing gas; and feeding at least a portion of the waste gas into a carbon dioxide scrubber for removing at least some carbon dioxide from the waste gas and forming a carbon dioxide lean gas that is mixed with the reducing gas. Optionally, the method also includes feeding at least a portion of the waste gas into the carbon dioxide scrubber for removing at least some carbon dioxide from the waste gas and forming a fuel gas after the addition of a hydrocarbon that is fed into the reformer. Optionally, the gas source and the reducing gas are associated with a direct reduction process for converting iron oxide to metallic iron in a reduction furnace that utilizes the reducing gas, optionally after some modification, and produces the gas source.
摘要:
A process for reducing iron oxide to metallic iron using coke oven gas (COG), including: a direct reduction shaft furnace for providing off gas; a COG source for injecting COG into a reducing gas stream including at least a portion of the off gas; and the direct reduction shaft furnace reducing iron oxide to metallic iron using the reducing gas stream and injected COG. The COG has a temperature of about 1,200 degrees C. or greater upon injection. The COG has a CH4 content of between about 2% and about 13%. Preferably, the COG is reformed COG. Optionally, the COG is fresh hot COG. The COG source includes a partial oxidation system. Optionally, the COG source includes a hot oxygen burner.
摘要:
A method and apparatus for sequestering carbon dioxide from a waste gas and reusing it as a recycled gas without emissions concerns, including: given a gas source divided into a process gas and a waste gas: mixing the process gas with a hydrocarbon and feeding a resulting feed gas into a reformer for reforming the feed gas and forming a reducing gas; and feeding at least a portion of the waste gas into a carbon dioxide scrubber for removing at least some carbon dioxide from the waste gas and forming a carbon dioxide lean gas that is mixed with the reducing gas. Optionally, the method also includes feeding at least a portion of the waste gas into the carbon dioxide scrubber for removing at least some carbon dioxide from the waste gas and forming a fuel gas after the addition of a hydrocarbon that is fed into the reformer. Optionally, the gas source and the reducing gas are associated with a direct reduction process for converting iron oxide to metallic iron in a reduction furnace that utilizes the reducing gas, optionally after some modification, and produces the gas source.
摘要:
An improved method and apparatus for recovering metal values from Electric Arc Furnace dust, particularly zinc and iron values, by mixing EAF dust and carbonaceous fines to form a particulate mixture; heating the mixture at a sufficient temperature and for a sufficient time to reduce and release volatile metals and alkali metals in a flue gas; collecting the released metals, and removing the metal values from the process as product.
摘要:
Methods and systems for producing direct reduced iron (DRI), comprising: generating a syngas stream in a carbon dioxide (CO2) and steam reformer; and providing the syngas stream to a direct reduction (DR) shaft furnace as a reducing gas stream. The methods and systems also comprise combining the syngas stream with a recycled off-gas stream from the DR shaft furnace to form the reducing gas stream. The methods and systems further comprise removing carbon dioxide (CO2) from the recycled off-gas stream from the DR shaft furnace prior to combining it with the syngas stream to form the reducing gas stream. The methods and systems still further comprise feeding CO2 removed from the recycled off-gas stream from the DR shaft furnace to the CO2 and steam reformer. The methods and systems still further comprise feeding recycled off-gas from the recycled off-gas stream from the DR shaft furnace to the CO2 and steam reformer.
摘要:
Methods and systems for producing direct reduced iron (DRI), comprising: generating a syngas stream in a carbon dioxide (CO2) and steam reformer; and providing the syngas stream to a direct reduction (DR) shaft furnace as a reducing gas stream. The methods and systems also comprise combining the syngas stream with a recycled off-gas stream from the DR shaft furnace to form the reducing gas stream. The methods and systems further comprise removing carbon dioxide (CO2) from the recycled off-gas stream from the DR shaft furnace prior to combining it with the syngas stream to form the reducing gas stream. The methods and systems still further comprise feeding CO2 removed from the recycled off-gas stream from the DR shaft furnace to the CO2 and steam reformer. The methods and systems still further comprise feeding recycled off-gas from the recycled off-gas stream from the DR shaft furnace to the CO2 and steam reformer.
摘要:
In various exemplary embodiments, the present invention provides systems and methods that can convert clean or raw natural gas, clean or dirty coke oven gas, or the like to reducing gas/syngas suitable for direct reduction with minimal processing or cleaning. Hydrocarbons and the like are converted to H2 and CO. S does not affect the conversion to reducing gas/syngas, but is removed or otherwise cleaned up by the iron bed in the direct reduction shaft furnace. Top gas may be continuously recycled or a once-through approach may be employed.
摘要:
A process for the direct reduction of iron ore when the external source of reductants is one or both of coke oven gas (COG) and basic oxygen furnace gas (BOFG). Carbon dioxide (CO2) is removed from a mixture of shaft furnace off gas, obtained from a conventional direct reduction shaft furnace, and BOFG. This CO2 lean gas is mixed with clean COG, humidified, and heated in an indirect heater. Oxygen (O2) is injected into the heated reducing gas. This hot reducing gas flows to the direct reduction shaft furnace for use. The spent hot reducing gas exits the direct reduction shaft furnace as shaft furnace off gas, produces steam in a waste heat boiler, is cleaned in a cooler scrubber, and is compressed and recycled to join fresh BOFG. A portion of the shaft furnace off gas is sent to the heater burners. The BOFG and COG are also employed for a variety of other purposes in the process.
摘要:
A process for reducing iron oxide to metallic iron using coke oven gas (COG), including: a direct reduction shaft furnace for providing off gas; a COG source for injecting COG into a reducing gas stream including at least a portion of the off gas; and the direct reduction shaft furnace reducing iron oxide to metallic iron using the reducing gas stream and injected COG. The COG has a temperature of about 1,200 degrees C. or greater upon injection. The COG has a CH4 content of between about 2% and about 13%. Preferably, the COG is reformed COG. Optionally, the COG is fresh hot COG. The COG source includes a partial oxidation system. Optionally, the COG source includes a hot oxygen burner.