Abstract:
A network device checkout system is accessed by another program that powers off unused systems. The checkout system keeps track of the usage of various systems on a network so that only the systems that need to remain on for productivity will consume power, with systems in a check-in state being powered off. Records of system usage are stored in an associated database. Systems that are no longer being utilized are powered off.
Abstract:
A method, apparatus, and computer instructions for programmatically generating synthetic transactions to monitor performance and availability of a Web application. The mechanism of the present invention may be implemented as a Java 2 Platform Enterprise Edition (J2EE) transaction, wherein the J2EE application is instrumented with just-in-time-instrumentation (JITI). A JITI probe determines if a customer request object contains a cookie. If not, the JITI probe inserts a cookie into the response object. The cookie is used to track URIs visited by the customer. An algorithm is used to identify the baseline customer transaction path based on the URIs in the cookie. All baseline customer transaction paths for all customers are then correlated to form a unique transaction, wherein the unique transaction comprises the most common tasks performed in the Web application. The Web application may then be monitored by programmatically recording and scheduling playback of the unique transaction.
Abstract:
A method, apparatus, and computer program product for automatically detecting changes in end-user transaction performance and availability caused by a transaction server configuration change. When a configuration change to an element in a distributed computing system is proposed, a set of instrumented synthetic transactions in the distributed computer system is initiated. Access to managed resources by the synthetic transactions is tracked to produce a list of utilized resources for the transaction. The utilized resources are then categorized according to criteria including associating the utilized resources with respective transactions. The initiating, tracking, and categorizing steps are repeated after a proposed configuration change using a selected subset of the set of transactions. The effect of the proposed configuration change is then displayed for the selected subset of the set of transactions.
Abstract:
A method, apparatus, and computer program product for automatically detecting changes in end-user transaction performance and availability caused by a transaction server configuration change. When a configuration change to an element in a distributed computing system is proposed, a set of instrumented synthetic transactions in the distributed computer system is initiated. Access to managed resources by the synthetic transactions is tracked to produce a list of utilized resources for the transaction. The utilized resources are then categorized according to criteria including associating the utilized resources with respective transactions. The initiating, tracking, and categorizing steps are repeated after a proposed configuration change using a selected subset of the set of transactions. The effect of the proposed configuration change is then displayed for the selected subset of the set of transactions.
Abstract:
A method, apparatus, and computer instructions for identifying unsafe synthetic transactions and modifying parameters for automated playback. Bytecode instrumentation is used to dynamically observe the behavior of application code directly and identify each universal resource locator traversed and parameters passed in a transaction. The bytecode instrumentation may determine, based on the parameters passed, that a parameter in the current transaction is an unsafe parameter, and that the unsafe parameter is associated with a test parameter in a previously overridden transaction. If the unsafe parameter has an associated test parameter, the bytecode instrumentation may dynamically override the unsafe parameter in the current transaction with the test parameter in order to make the transaction safe for synthetic playback. In this manner, transactions may be scheduled for playback as usual, and the bytecode insertion methods ensure that the unsafe parameters in the transactions are automatically overridden for the user.
Abstract:
A method, apparatus, and computer instructions for identifying unsafe synthetic transactions and modifying parameters for automated playback. Bytecode instrumentation is used to dynamically observe the behavior of application code directly and identify each universal resource locator traversed and parameters passed in a transaction. The bytecode instrumentation may determine, based on the parameters passed, that a parameter in the current transaction is an unsafe parameter, and that the unsafe parameter is associated with a test parameter in a previously overridden transaction. If the unsafe parameter has an associated test parameter, the bytecode instrumentation may dynamically override the unsafe parameter in the current transaction with the test parameter in order to make the transaction safe for synthetic playback. In this manner, transactions may be scheduled for playback as usual, and the bytecode insertion methods ensure that the unsafe parameters in the transactions are automatically overridden for the user.
Abstract:
A method and apparatus is provided for monitoring operations of a specified transaction server that has an associated network topology. One embodiment comprises the steps of defining a plurality of zones within the network topology, and assigning one or more monitoring agents to each of the zones, wherein each agent is adapted to selectively run synthetic transactions with the specified server. The method further comprises monitoring results of successive synthetic transactions carried out by the agents, in order to detect any errors associated with the successive transactions. In response to detecting a performance or an availability problem, selectively, that is associated with a particular synthetic transaction run by a particular one of the agents, one or more agents is dynamically scheduled to run synthetic transactions, wherein each scheduled transaction has a specified relationship with the particular transaction.
Abstract:
A method and apparatus is provided for monitoring operations of a specified transaction server that has an associated network topology. One embodiment comprises the steps of defining a plurality of zones within the network topology, and assigning one or more monitoring agents to each of the zones, wherein each agent is adapted to selectively run synthetic transactions with the specified server. The method further comprises monitoring results of successive synthetic transactions carried out by the agents, in order to detect any errors associated with the successive transactions. In response to detecting a performance or an availability problem, selectively, that is associated with a particular synthetic transaction run by a particular one of the agents, one or more agents is dynamically scheduled to run synthetic transactions, wherein each scheduled transaction has a specified relationship with the particular transaction.
Abstract:
A method, apparatus, and computer instructions for identifying unsafe synthetic transactions and modifying parameters for automated playback. Bytecode instrumentation is used to dynamically observe the behavior of application code directly and identify each universal resource locator traversed and parameters passed in a transaction. The bytecode instrumentation may determine, based on the parameters passed, that a parameter in the current transaction is an unsafe parameter, and that the unsafe parameter is associated with a test parameter in a previously overridden transaction. If the unsafe parameter has an associated test parameter, the bytecode instrumentation may dynamically override the unsafe parameter in the current transaction with the test parameter in order to make the transaction safe for synthetic playback. In this manner, transactions may be scheduled for playback as usual, and the bytecode insertion methods ensure that the unsafe parameters in the transactions are automatically overridden for the user.
Abstract:
A network device checkout system is accessed by another program that powers off unused systems. The checkout system keeps track of the usage of various systems on a network so that only the systems that need to remain on for productivity will consume power, with systems in a check-in state being powered off. Records of system usage are stored in an associated database. Systems that are no longer being utilized are powered off.