Abstract:
Hyperspectral imaging calibration devices and methods for their use are described that generate images of three dimensional samples. A calibration device may assume the shape of a desired imaging sample such as a body part and may be sterile prior to placement. The calibration device may include openings or may be modified to expose a region of the sample during use. Spectral images, typically obtained at multiple wavelengths, are made of the calibration device. Algorithms are provided that utilize the spectral images of the calibration device to determine the effects of lighting conditions and sample shape on the sample image to form a calibrated image. Calibrated images produced by these devices and methods can provide information, including clinical data that are less sensitive to lighting and sample shape compared to alternative technologies.
Abstract:
A non-invasive tool for skin disease diagnosis would be a useful clinical adjunct. The purpose of this study was to determine whether visible/near-infrared spectroscopy can be used to non-invasively characterize skin diseases. In-vivo visible- and near-infrared spectra (400-2500 nm) of skin neoplasms (actinic keratoses, basal cell carcinomata, banal common acquired melanocytic nevi, dysplastic melanocytic nevi, actinic lentigines and seborrheic keratoses) were collected by placing a fiber optic probe on the skin. Paired t-tests, repeated measures analysis of variance and linear discriminant analysis were used to determine whether significant spectral differences existed and whether spectra could be classified according to lesion type. Paired t-tests showed significant differences (p
Abstract:
A novel near infrared spectroscopic technique was used to characterize the joints in arthritis with comparison against normal joints. A beam of near infrared light was passed to joints through a fibre optic cable. Scattered light was collected by the same fibre bundle and a spectrum of the joint computed. Multivariate pattern recognition techniques identified regions of the spectrum which allowed discrimination between healthy and affected joints. Linear discriminant analysis resulted in correct classification of 74% of the joints. The high degree of similarity between mean spectra representing the early, late and control groups along with the significant between—subject variability in the data make diagnosis based on visual assessment of the spectra impossible. Linear discriminant analysis was therefore applied to spectra to determine if spectra could be classified by statistical methods as arising from early or late RA. Application of LDA resulted in correct classification of 74% of the joints. Interestingly, the spectral regions in which diagnostic differences were found by the multivariate analysis contain absorption bands related to tissue oxygenation status (oxy and deoxyhaemoglobin) and oxygen utilisation (cytochrome aa3), suggesting that ischaemic changes within the joint are being detected.
Abstract:
Hyperspectral imaging calibration devices and methods for their use are described that generate images of three dimensional samples. A calibration device may assume the shape of a desired imaging sample such as a body part and may be sterile prior to placement. The calibration device may include openings or may be modified to expose a region of the sample during use. Spectral images, typically obtained at multiple wavelengths, are made of the calibration device. Algorithms are provided that utilize the spectral images of the calibration device to determine the effects of lighting conditions and sample shape on the sample image to form a calibrated image. Calibrated images produced by these devices and methods can provide information, including clinical data that are less sensitive to lighting and sample shape compared to alternative technologies.