Abstract:
The invention is directed to methods and systems of hyperspectral and multispectral imaging of medical tissues. In particular, the invention is directed to new devices, tools and processes for the detection and evaluation of diseases and disorders such as, but not limited to diabetes and peripheral vascular disease, that incorporate hyperspectral or multispectral imaging.
Abstract:
Balloon probes, adapted for use in endoscopy and other medical procedures, are useful to obtain spectroscopic information reflected or emitted from a tissue of interest in the infrared spectral region. The information collected by the probe is useful in the diagnosis and treatment of disease. The invention also relates to methods utilizing these probes to analyze a surface of interest, in a minimally invasive manner, in connection with the diagnosis and treatment of disease.
Abstract:
Balloon probes, adapted for use in endoscopy and other medical procedures, are useful to obtain spectroscopic information reflected or emitted from a tissue of interest in the infrared spectral region. The information collected by the probe is useful in the diagnosis and treatment of disease. The invention also relates to methods utilizing these probes to analyze a surface of interest, in a minimally invasive manner, in connection with the diagnosis and treatment of disease.
Abstract:
Hyperspectral imaging calibration devices and methods for their use are described that generate images of three dimensional samples. A calibration device may assume the shape of a desired imaging sample such as a body part and may be sterile prior to placement. The calibration device may include openings or may be modified to expose a region of the sample during use. Spectral images, typically obtained at multiple wavelengths, are made of the calibration device. Algorithms are provided that utilize the spectral images of the calibration device to determine the effects of lighting conditions and sample shape on the sample image to form a calibrated image. Calibrated images produced by these devices and methods can provide information, including clinical data that are less sensitive to lighting and sample shape compared to alternative technologies.
Abstract:
The invention is directed to imaging methods for performing real-time or near real-time assessment and monitoring. Embodiments of these methods are useful in a plurality of settings including surgery, clinical procedures, tissue assessment, diagnostic procedures, forensic, health monitoring and medical evaluations.
Abstract:
A non-invasive analyte monitoring instrument has a radiation source for directing excitation radiation to a portion of a surface of a tissue wherein said source emits radiation at a plurality of different wavelengths that excites a target in said tissue causing said target to emit radiation such that the radiation received at the surface provides an analyte level indication of the patient. A radiation detector positioned to receive radiation emitted from the surface wherein said radiation detector is configured to synchronously scan radiation emitted by the target with the excitation radiation. A processing circuit operatively connected to the radiation detector that translates radiation received at the surface to a measurable signal to obtain said analyte level indication, wherein said radiation source comprises a visible light source or an ultraviolet light source and wherein the target is selected from the group consisting of a structural matrix tissue component, a cellular tissue component, a mitochondrial tissue component, a collagen cross link, a pepsin-digestible collagen cross link, a collagenase-digestible collagen cross link, a non-pepsin digestible collagen cross link, an elastin cross link, a tryptophan-containing protein, NADH, FAD, a flavoprotein, and any combination thereof.
Abstract:
Instruments and methods are described for performing non-invasive measurements of analyte levels and for monitoring, analyzing and regulating tissue status, such as tissue glucose levels.
Abstract:
A system and method for simulated device training is disclosed. According to one embodiment of the present invention, the system includes a simulated device having at least one sensor. A controller is provided, and interfaces with the at least one sensor and with a feedback device. In another embodiment, the method includes the steps of (1) providing a simulated device having at least one sensor; (2) monitoring the simulated device for the presence of a stimulus; and (3) providing feedback in response to a predetermined stimulus.
Abstract:
A medical device is provided that comprises: (i) an expandable capsule that can be swallowed by a patient and positioned to a target tissue within the patient, (ii) an endoscope attached to the capsule for obtaining an image of the target tissue at a wavelength of interest, and (iii) a thin tube or wire configured to position the device to the target tissue. The thin tube or wire is expandable. The capsule can be swallowed in stages to position the device at different locations within the gastrointestinal tract. The thin tube or wire can deliver electromagnetic radiation for visualization of the target tissue. The thin tube or wire can provide a passage of a biopsy device for access to the target tissue. In some instances, the capsule comprises a band which rotates around the capsule to clean the capsule. In some instances, the capsule collects multispectral or hyperspectral information.
Abstract:
The present invention provides a hyperspectral imaging system which demonstrates changes in tissue oxygen delivery, extraction and saturation during shock and resuscitation including an imaging apparatus for performing real-time or near real-time assessment and monitoring of shock, including hemorrhagic, hypovolemic, cardiogenic, neurogenic, septic or burn shock. The information provided by the hyperspectral measurement can deliver physiologic measurements that support early detection of shock and also provide information about likely outcomes.