Abstract:
A device for recovering a temporal reference in a free-running magnetic resonance tomography (MRT) receive chain includes a time reference encoder and a time reference decoder. The time reference encoder is configured to generate a modulation signal as a function of a reference clock, where the modulation signal is configured for a correlation with a temporal resolution less than a maximum predetermined phase deviation and a maximum that may clearly be identified. The time reference decoder is configured to receive, via the first signal input, a receive signal as a function of the modulation signal, perform a correlation with a reference signal, and generate a signal as a function of a temporal reference of the modulation signal in the receive signal in relation to the reference signal.
Abstract:
The embodiments relate to a method and a receiving system for an imaging magnetic resonance tomography system. The receiving system includes at least one multiplexer entity for a plurality of receive signals, which respectively come from an antenna of a local coil and may be switched to an analog-digital converter, wherein sampling rates (e.g., 20 MS/s per Ch, 40 MS/s per Ch, 80 MS/s per Ch) of an analog-digital converter for the sampling of a receive signal may be changed.
Abstract:
The present embodiments relate to a local coil system for a magnetic resonance system. The local coil system includes at least one local coil for detecting MR response signals and at least one transmitting device for the wireless transmission of signals to a receiver of the magnetic resonance system. The local coil system is embodied with a transmitter-side diversity. A receiver-side diversity may exist in the magnetic resonance system.
Abstract:
A method and an apparatus for a magnetic resonance imaging system are provided. A type of further processing of signals transmitted by a local coil to a magnetic resonance imaging (MRI) system is determined in dependence on information received in or from the local coil about a local-coil type of the local coil.
Abstract:
A system and method for converting an analog detection signal of a magnetic resonance detection coil into a digital detection signal and for transmitting the detection signal to an evaluating device. In an embodiment, the detection signal is digitized by an analog-to-digital converter, decimated by a decimation filter, transmitted through a transmission route, then equalized by an equalizing filter.
Abstract:
In a method and an arrangement for magnetic resonance signal transmission, a first channel of a local coil arrangement has a first individual antenna that receives a first magnetic resonance signal, and a first frequency converter connected with the first individual antenna, and the first frequency converter forms a first signal with the first magnetic resonance signal supplied thereto and a first oscillator signal supplied thereto. A second channel of the local coil arrangement has a second individual antenna that receives a second magnetic resonance signal, and a second frequency converter connected with the second individual antenna, and the second frequency converter forms a second signal from the second magnetic resonance signal supplied thereto and a second oscillator signal supplied thereto. The local coil arrangement has a signal combination device that applies the first signal and the second signal to a single transmission path. At least one of the oscillator signals has a frequency that corresponds to the difference between the frequency of a first synthesizer frequency signal and the frequency of a second synthesizer frequency signal that are supplied to the local coil arrangement.
Abstract:
In a method to affix RF coils (in particular local coils) on a patient in examinations with a magnetic resonance apparatus, a horizontal board accommodates the patient for a magnetic resonance examination to be implemented, an RF coil that has coil electronics is affixed with a fastening strap on the patient, and the fastening strap has a connection cable integrated therewith. The coil electronics are supplied with energy via the integrated connection cable.
Abstract:
An arrangement for transmitting magnetic resonance signals, with a transmission link that connects a local coil with a receiver, has a first channel of the local coil with a first single antenna to acquire a first magnetic resonance signal, as well as a first mixer connected with the first single antenna. The first mixer forms an intermediate-frequency first signal from the supplied first magnetic resonance signal. A second channel of the local coil has a second single antenna to acquire a second magnetic resonance signal, as well as a second mixer connected with the second single antenna. The second mixer forms an intermediate-frequency second signal from the supplied second magnetic resonance signal. The local coil has a device for signal combination that, by frequency multiplexing, that combines the intermediate-frequency first signal of the first channel and the intermediate-frequency second signal of the second channel so that it arrives at the receiver via the transmission path. The receiver has an A/D converter at which one of the transmitted intermediate-frequency signals of an associated channel arrives in order to be sampled with a sampling frequency for digitization. For frequency conversion, a first local oscillator frequency is connected at the first mixer and a second local oscillator frequency is connected at the second mixer. the first and second local oscillator frequencies are selected such that intermediate-frequencies formed by the frequency conversion are mirror-symmetrical relative to the sampling frequency of the A/D converter.
Abstract:
A filter circuit arrangement for filtering of a radio-frequency signal has a first tunable filter and a phase regulation loop in order to hold the first tunable filter to a transmission phase constant relative to the frequency of the radio-frequency signal. The filter circuit arrangement has a second tunable filter arranged parallel to the first tunable filter in the phase regulation loop. The first tunable filter and the second tunable filter exhibit different attenuation characteristics and are fashioned and connected within the phase regulation loop so that: a capture range of the filter circuit arrangement, in which a tuning of the phase regulation loop to a radio-frequency signal to be filtered is possible is dominated by the attenuation characteristic of the second tunable filter, and so that the transmission behavior of the filter circuit arrangement in operation is dominated by the attenuation characteristic of the first tunable filter, given a tuned phase regulation loop. A circuit arrangement for generation of a local oscillator signal has an oscillation generator and a filter circuit arrangement as described above arranged downstream of the oscillation generator.
Abstract:
A filter circuit arrangement for filtering of a radio-frequency signal has a first tunable filter and a phase regulation loop in order to hold the first tunable filter to a transmission phase constant relative to the frequency of the radio-frequency signal. The filter circuit arrangement has a second tunable filter arranged parallel to the first tunable filter in the phase regulation loop. The first tunable filter and the second tunable filter exhibit different attenuation characteristics and are fashioned and connected within the phase regulation loop so that: a capture range of the filter circuit arrangement, in which a tuning of the phase regulation loop to a radio-frequency signal to be filtered is possible is dominated by the attenuation characteristic of the second tunable filter, and so that the transmission behavior of the filter circuit arrangement in operation is dominated by the attenuation characteristic of the first tunable filter, given a tuned phase regulation loop. A circuit arrangement for generation of a local oscillator signal has an oscillation generator and a filter circuit arrangement as described above arranged downstream of the oscillation generator.