摘要:
In a method and a medical installation for assisting in a medical measure implemented by a medical device, a lighting element generates light that uniformly illuminates the medical device or its environment, the illumination being designed to reduce stress on the part of a patient undergoing the medical measure.
摘要:
To generate a tomosynthetic 3D x-ray image composed of a number of slice images, a tomosynthetic 3D intermediate image composed of a number of slice images is reconstructed from 2D projection images that have not been noise-filtered. The microcalcium regions contained in these slice images are segmented, and one or more subject slice images relevant to these microcalcium voxels are determined for each microcalcium region. The microcalcium voxels belonging to the segmented microcalcium region in this subject slice image or in these subject slice images are projected forwards in the 2D projection images, and the microcalcium pixels associated with these microcalcium voxels are marked in the 2D projection images. Noise-filtered 2D projection images are subsequently generated by subjecting the microcalcium pixels of the 2D projection images to no noise filtering or a noise filtering that leads to a noise reduction reduced relative to the remaining image regions. The tomosynthetic 3D x-ray image is then calculated from the 2D projection images that have been noise-filtered in this manner.
摘要:
An improvement in image quality when determining an image using iterative reconstruction is provided by taking account of focus shifts. In order to take into consideration the influence of focus shift in calculated projections, several different projections are calculated for each section of the focus path on a section-by-section basis. The several different calculated projections for a section are averaged for comparison with a projection recorded in the section. Improved image quality is provided, for example, in tomosynthesis applications in which a large number of recordings are made with a stationary detector.
摘要:
A radiography diagnostic apparatus has a radiation source that emits an x-ray beam, and a protection that is mounted to prevent unwanted body portions of a patient, or operating personnel, from interacting with the x-ray beam.
摘要:
In a method and device for generating a tomosynthetic 3D x-ray image, a number of digital x-ray images of an examination subject are acquired at respectively different projection angles, within a limited angle range, using an x-ray source and a digital x-ray detector. At an initial position for a selected projection angle, a spatially-fixed reference point is projected onto a partial region of the acquisition surface of the x-ray detector. For each further projection angle, a corresponding partial region on the acquisition surface is automatically determined. The tomosynthetic 3D image is reconstruction exclusively using image data from the respective partial regions.
摘要:
To generate a tomosynthetic 3D x-ray image composed of a number of slice images, a tomosynthetic 3D intermediate image composed of a number of slice images is reconstructed from 2D projection images that have not been noise-filtered. The microcalcium regions contained in these slice images are segmented, and one or more subject slice images relevant to these microcalcium voxels are determined for each microcalcium region. The microcalcium voxels belonging to the segmented microcalcium region in this subject slice image or in these subject slice images are projected forwards in the 2D projection images, and the microcalcium pixels associated with these microcalcium voxels are marked in the 2D projection images. Noise-filtered 2D projection images are subsequently generated by subjecting the microcalcium pixels of the 2D projection images to no noise filtering or a noise filtering that leads to a noise reduction reduced relative to the remaining image regions. The tomosynthetic 3D x-ray image is then calculated from the 2D projection images that have been noise-filtered in this manner.
摘要:
A tomosynthesis apparatus has an x-ray source that generates an x-ray beam emanating from a focus, which is received by a flat panel detector. To set a tomosynthesis angle, the position of the central axis of the x-ray beam of the x-ray source is variable. A collimator diaphragm has a diaphragm aperture that limits the expansion of the x-ray beam at the location of the flat panel detector. The collimator diaphragm is arranged in the beam path between the focus and the flat panel detector. The shape and size of the diaphragm aperture are dynamically varied (adjusted) dependent on the changing tomosynthesis angle, such that the expansion of the x-ray beam at the location of the flat panel detector always essentially corresponds to the detector dimensions.
摘要:
In a method and device for generating a tomosynthetic 3D x-ray image, a number of digital x-ray images of an examination subject are acquired at respectively different projection angles, within a limited angle range, using an x-ray source and a digital x-ray detector. At an initial position for a selected projection angle, a spatially-fixed reference point is projected onto a partial region of the acquisition surface of the x-ray detector. For each further projection angle, a corresponding partial region on the acquisition surface is automatically determined. The tomosynthetic 3D image is reconstruction exclusively using image data from the respective partial regions.
摘要:
In a tomographical image reconstruction method and apparatus to generate an image of an examination subject from a number of digital projection data acquired at different projection angles, a first analytical filter kernel (formed by a first analytical function) is determined for a filtered back projection in the spatial frequency range, this first analytical filter kernel approximating, at least in a range of the spatial frequency, a discrete filter kernel iteratively determined for a model. Back projection is implemented with a second analytical filter kernel calculated from the analytical filter kernel and formed by a second analytical function.
摘要:
A tomosynthesis apparatus has an x-ray source that generates an x-ray beam emanating from a focus, which is received by a flat panel detector. To set a tomosynthesis angle, the position of the central axis of the x-ray beam of the x-ray source is variable. A collimator diaphragm has a diaphragm aperture that limits the expansion of the x-ray beam at the location of the flat panel detector. The collimator diaphragm is arranged in the beam path between the focus and the flat panel detector. The shape and size of the diaphragm aperture are dynamically varied (adjusted) dependent on the changing tomosynthesis angle, such that the expansion of the x-ray beam at the location of the flat panel detector always essentially corresponds to the detector dimensions.