Abstract:
An apparatus and method of fabricating and operating a micro-electromechanical systems (MEMS) integrated optical structure is disclosed. Micro-optics is integrated with MEMS actuators to provide a building block for a micro-optical communication device. Such micro-optical communication device may realize a variety of optical communication systems including optical interconnects, laser communications, or fiber optic switches. In accordance with one aspect of the present invention, a micro-optical element such as a micro-lens is advantageously integrated with an actuator such as MEMS comb drive actuator to form a MEMS lens assembly. The MEMS lens assembly is further coupled to an optical source which may provide a MEMS integrated micro-optical communication device. This integration substantially obviates the generally needed external or manual positioning of the micro-optical element to align a light beam or an optical signal being emitted from the optical source. The MEMS comb drive actuator, responsive to an actuation force, selectively positions the micro-optical element. By appropriately micro positioning a micro-optical element such as a micro-lens relative to an optical source, such as an input optical fiber or a laser diode, a focused light beam or an optical signal may be coupled to a respective optical fiber or a detector. In one embodiment, a commonly used flip chip module assembly technique may be adapted for bonding the MEMS lens assembly to a carrier substrate, which preferably receives the optical source. The carrier substrate is generally disposed on a host assembly. A flip chip based passive alignment of the MEMS lens assembly could be provided. Additionally, an active alignment of the light beam or optical signal with an optical detector may be provided, which can be maintained through a feedback loop.
Abstract:
Embodiments of a low resistivity contact to a semiconductor structure are disclosed. In one embodiment, a semiconductor structure includes a semiconductor layer, a semiconductor contact layer having a low bandgap on a surface of the semiconductor layer, and an electrode on a surface of the semiconductor contact layer opposite the semiconductor layer. The bandgap of the semiconductor contact layer is in a range of and including 0 to 0.2 electron-volts (eV), more preferably in a range of and including 0 to 0.1 eV, even more preferably in a range of and including 0 to 0.05 eV. Preferably, the semiconductor layer is p-type. In one particular embodiment, the semiconductor contact layer and the electrode form an ohmic contact to the p-type semiconductor layer and, as a result of the low bandgap of the semiconductor contact layer, the ohmic contact has a resistivity that is less than 1×10−6 ohms·cm2.
Abstract:
An electronic device, such as a filter or phase shifter, for example, includes a substrate, and a MEMS capacitor on the substrate and having a plurality of selectable capacitance values. The MEMS capacitor preferably includes a lower capacitor electrode on the substrate, and a movable bridge including end portions connected to the substrate laterally adjacent the lower capacitor electrode. The movable bridge may also include a conductive medial portion between the end portions defining an upper capacitor electrode suspended above the lower capacitor electrode and being movable between an upper position and a lower position by an electrostatic force generated between the capacitor electrodes. The upper and lower positions provide respective low and high selectable capacitance values. Moreover, the movable bridge may further include at least one travel limiting portion between the end portions for engaging adjacent substrate portions to keep the upper capacitor electrode in a predetermined spaced relation from the lower capacitor electrode when in the lower position. This travel limiting feature of the MEMS capacitor is relatively easy to fabricate and avoids the sticking or stiction problem of some other types of MEMS capacitors.
Abstract:
Embodiments of a low resistivity contact to a semiconductor structure are disclosed. In one embodiment, a semiconductor structure includes a semiconductor layer, a semiconductor contact layer having a low bandgap on a surface of the semiconductor layer, and an electrode on a surface of the semiconductor contact layer opposite the semiconductor layer. The bandgap of the semiconductor contact layer is in a range of and including 0 to 0.2 electron-volts (eV), more preferably in a range of and including 0 to 0.1 eV, even more preferably in a range of and including 0 to 0.05 eV. Preferably, the semiconductor layer is p-type. In one particular embodiment, the semiconductor contact layer and the electrode form an ohmic contact to the p-type semiconductor layer and, as a result of the low bandgap of the semiconductor contact layer, the ohmic contact has a resistivity that is less than 1×10−6 ohms·cm2.