Abstract:
An electric cable includes an electrical conductor surrounded by a first layer of mica tape made up of mica particles deposited by means of a polymer binder on a backing, a second layer of a polyimide tape, and a third layer of a polytetrafluoroethylene tape, where the first layer is subjected to heat treatment at a temperature of at least 400° C. and the ratio R of the weight per unit length of PTFE over the sum of the weights per unit length of the polymer binder and of the polyimide is such that R is greater than or equal to 2 when the section of the electrical conductor is no greater than 0.2 mm2, R is greater than or equal to 4 when the section of the electrical conductor is strictly greater than 0.2 mm2 and strictly less than 0.6 mm2, R is greater than or equal to 6 when the section of the electrical conductor is equal to 0.6 mm2, and R is greater than or equal to 12 when the section of the electrical conductor is strictly greater than 0.6 mm2.
Abstract:
The invention relates to a data transmission electric wire comprising a plurality of conductor strands covered in at least one insulating covering including PTFE, the plurality of strands comprising an inner core of first strands covered by at least one outer layer of second strands, said first and second strands being constituted of different metals, the metal of said second conductor strands presenting hardness that is lower than that of the metal of said first conductors, and said first strands being constituted essentially by an alloy of copper and said second strands being constituted essentially of copper. According to the invention, said alloy is a homogeneous copper alloy in the alpha phase that is stable at a temperature less than or equal to 500° C.
Abstract:
A laser-markable cable, in particular an optical fiber cable, having an outer protective layer of varnish comprising an outer layer (14) provided with a pigment and sublimable by means of a first type of laser, and an inner underlayer (13) of a contrasting color relative to that of the outer layer. The cable is characterized by the fact that said outer layer (14) is also modifiable in color by a second type of laser without being destroyed in thickness, thereby providing a second possible method of marking.
Abstract:
The invention relates to a data transmission electric wire comprising a plurality of conductor strands covered in at least one insulating covering including PTFE, the plurality of strands comprising an inner core of first strands covered by at least one outer layer of second strands, said first and second strands being constituted of different metals, the metal of said second conductor strands presenting hardness that is lower than that of the metal of said first conductors, and said first strands being constituted essentially by an alloy of copper and said second strands being constituted essentially of copper. According to the invention, said alloy is a homogeneous copper alloy in the alpha phase that is stable at a temperature less than or equal to 500° C.
Abstract:
An electric cable includes an electrical conductor surrounded by a first layer of mica tape made up of mica particles deposited by means of a polymer binder on a backing, a second layer of a polyimide tape, and a third layer of a polytetrafluoroethylene tape, where the first layer is subjected to heat treatment at a temperature of at least 400° C. and the ratio R of the weight per unit length of PTFE over the sum of the weights per unit length of the polymer binder and of the polyimide is such that R is greater than or equal to 2 when the section of the electrical conductor is no greater than 0.2 mm2, R is greater than or equal to 4 when the section of the electrical conductor is strictly greater than 0.2 mm2 and strictly less than 0.6 mm2, R is greater than or equal to 6 when the section of the electrical conductor is equal to 0.6 mm2, and R is greater than or equal to 12 when the section of the electrical conductor is strictly greater than 0.6 mm2.
Abstract:
The cable includes a conductive coating layer disposed on an internal dielectric and surrounded by a conductive screen. The cable is characterized in that said conductive coating is a conductive silicone coating and in that the dielectric is treated and therefore has an adapted surface tension value greater than a value typically in current use, therefore directly giving said silicone coating layer a small level of adherence to said treated dielectric and thereby rendering it peelable.Applicable to cables having operating temperatures of the order of 250.degree. C. and high noise immunity.
Abstract:
An elongate body insulated by means of an insulating covering, said covering being constituted by a tape (2) made of synthetic material taped around said body (1) and covered in a layer of varnish (11) made of synthetic material, the body being characterized in that the taping is such that there exists a groove (4) between the free edge (5) of any portion of a turn (3) that is not covered by the following turns and the uncovered surface (6) of the preceding turn, the width of said groove (4) lying substantially in the range 0% to 5% of the width of said tape (2) and being strictly greater than zero.
Abstract:
A laser beam markable electric cable comprising an outer layer (13) enabling such marking to be performed, wherein said outer layer (13) is of a contrasting color relative to the color of an underlayer (14) which is absorbent at the laser beam wavelength. Said outer layer (13) is a thin layer which, during marking, is destroyed through its entire thickness by the laser beam (10) so as to reveal the underlayer (14).
Abstract:
The present invention relates to a method of manufacturing a flexible electric cable with a tinned stranded conductor on which insulation is applied at a high temperature. Previous diffusion of tin in the copper of the conductor strands makes it possible to prevent the strands from blocking together while the insulation is being formed at a temperature higher than the melting point of tin, while still leaving a final layer of pure tin at the surface of these conductor strands. Application to manufacture of aircraft cables.